Кислоты – сильные окислители




Окислительно – восстановительные реакции

В неорганической химии

Восстановители и продукты их окисления:

Восстановители Продукты окисления Условия
Металлы, м М+, М2+, М3+ кислая и нейтральная среда
Металлы, образующие амфотерные гидроксиды: Ве, Zn, Al [Zn(OH)4]2-, [Al(OH)4]-, ZnO22-, AlO2- · щелочная среда (раствор), · щелочная среда (сплавление)
Углерод, С СО СО2 · при высокой температуре, · при горении, в кислой среде
Оксид углерода (II), СО СО2
Сера, S SO2, SO42-, SO32- · кислая среда, · щелочная среда
Сероводород, H2S, cульфиды, S2- S SO2 H2SO4, SO42- · с сильными окислителями, · при обжиге, · с сильными окислителями
Оксид серы (IV), SO2, cернистая кислота H2SO3, сульфиты SO32-(Na2SO3) SO3 H2SO4, SO42-(Na2SO4) · в газовой сфере, · в водных растворах
Фосфор, Р, фосфорин РН3, фосфиты РО33- Р2О5 Н3РО4, РО43- · в газовой сфере, · в водных растворах
Аммиак, NH3 N2 NO · в большинстве случаев, · каталитическое окисление
Азотистая кислота, HNO2, нитриты NO2-(KNO2) HNO3 NO3-(KNO3)  
Галогеноводороды, кислоты HCl, HBr, HI и их соли   Cl2, Br2, I2  
Катионы Cr3+ CrO42 - Cr2O72 - · щелочная среда, · кислая среда
Катионы Fe2+, Cu+ Fe3+, Cu2+  
Катионы Mn2+ MnO2 MnO42- MnO4- · нейтральная среда, · щелочная среда, · кислая среда
Пероксид водорода, Н2О2 О2 + Н+ О2 + Н2О · кислая среда. · нейтральная среда

 

Окислители и продукты их восстановления:

Окислители Продукты восстановления Условия
Галогены, F2, Cl2, Br2, I2 F -, Cl -, Br -, I -  
Оксокислоты, хлора, брома и их соли: HClO, HBrO, HClO3,HBrO3   Cl -, Br -  
Кислород, О2 O2-  
Озон, О3 Н2О + О2 ОН - + О2 · кислая среда, · нейтральная среда
Сера, S S2-  
Оксид серы (VI), SO3 SO2  
Оксид серы (IV), SO2 S  
Азотистая кислота, HNO2, нитриты, NO2- NO N2 · в большинстве случаев, · с солями аммония
Оксид азота (IV), NO2 более сильный окислитель, чем HNO3, NO N2 NH3   · в большинстве случаев
Нитраты, NO3- NO2- NH3 · в расплавах, · с сильными восстановителями:
Хроматы, CrO42-, дихроматы, Cr2O72- [Cr(OH)6]3- Cr(OH)3 Cr3+ · щелочная среда, · нейтральная среда, · кислая среда
Катионы, Fe3+, Cu2+ Fe2+, Cu+  
Перманганаты, MnO4 - Mn2+ + H2O MnO2 + щелочь MnO42- + H2O · кислая среда, · нейтральная, слабощелочная среда, · сильнощелочная среда
Пероксид водорода, Н2О2 Н2О ОН - · кислая среда, · нейтральная и щелочная среда

 

1. При составлении уравнений ОВР важно уметь определять окислитель и восстановитель. Некоторые вещества могут быть только восстановителями. Это металлы и вещества, которые содержат элемент, изменяющий степень окисления, в низшей степени окисления (например: NH3, PH3, H2S, HCl, HBr, HI и их соли). Фтор и сложные вещества, содеожащие элемент в высшей степени окисления, могут быть только окислителями (например: HNO3, H2SO4, SO3, KMnO4, K2CrO4, K2Cr2O7).

2. Вещества, которые содержат элементы в промежуточной степени окисления, могут проявлять, в зависимости от природы реагента – как окислительные, так и восстановительные свойства. Это – все неметаллы (кроме фтора): N2, NO, HNO2, KNO2, H2O2, S, SO2 и другие.

 

2KI + 2SO3 = I2 + SO2 + K2SO4

SO2 + NO2 = SO3 + NO

В этой реакции оксид серы (IV) проявляет восстановительные свойства, т.к. реагирует с сильным окислителем – NO2.

2H2S + SO2 = 3S + 2H2O

В данной реакции SO2 проявляет окислительные свойства, т.к. реагирует с более сильным восстановителем – H2S.

3. На ход окислительно – восстановительных реакций в растворах влияет среда, в которой протекает реакция и, поэтому, окислительно – восстановительный процесс между одними и теми же веществами в разных средах приводит к образованию различных продуктов. Для создания кислой среды обычно используют разбавленную серную кислоту. Азотную и соляную применяют редко, т.к. первая является сильным окислителем, а вторая способна окисляться. Для создания щелочной среды применяют растворы гидроксидов калия или натрия. Примеры влияния среды на характер продуктов ОВР:

5Na2SO3 + 2KMnO4 + 3H2SO4 = 5Na2SO4 + 2MnSO4 + K2SO4 + 3H2O

3Na2SO3 + 2KMnO4 + H2O = 3Na2SO4 + 2MnO2¯ + 2KOH

Na2SO3 + 2KMnO4 + 4KOH = Na2SO4 + 2K2MnO4 + 2H2O

16HBr + 2NaMnO4 = 5Br2 + 2MnBr2 + 2NaBr + 8H2O

4KMnO4 + 4KOH = 4K2MnO4 + O2 + 2H2O

 

Кислоты – сильные окислители

Это серная кислота концентрированная и азотная кислота в любом виде. Они окисляют почти все металлы и такие неметаллы, как углерод, фосфор, серу, и многие сложные вещества.

Возможные продукты восстановления этих кислот:

 

H2SO4 ® SO2 ® S ® H2S

HNO3 ® NO2 ® NO ® N2O ® N2 ® NH3(NH4NO3)

 

При взаимодействии с металлами получаются три вещества: соль, вода и продукт восстановления кислоты, который зависит от концентрации кислоты, активности металла и температуры.

Чем меньше концентрация кислоты. А металл более активен, тем больше степень восстановления кислоты.

Представим возможные направления взаимодействия этих кислот с различными веществами в виде схем:

 

H2SO4 конц.

 

 


не реагирует не реагирует восстанавливается восстанавливается

с Au, Pt и на холоде до SO2 с неактивными до SO2, S или H2S

некоторыми с Fe,Al, Cr металлами и с металлами средней

другими неметаллами активности и активными,

металлами со сложными веществами

 

Cu + H2SO4 конц. = CuSO4 + SO2­ + 2H2O

Zn + 2H2SO4 конц.= ZnSO4 +SO2­ + 2H2O

3Zn + 4H2SO4 конц. = 3ZnSO4 + S¯ + 4H2O

4Zn + 5H2SO4 конц. = 4ZnSO4 + H2S­ + 4H2O

 

HNO3 конц.

 

 


не реагирует не реагирует восстанавливается восстанавливается

с Au, Pt и на холоде до NO2 с неактив - до NO, N2O, N2 или

некоторыми с Fe, Al, Cr ными металлами, NH4NO3 (если кислота

другими неметаллами, очень разбавлена или

металлами сложными сказано, что газ не выделялся)

веществами с металлами средней активности и

активными

 

Cu + 4HNO3 конц. = Cu (NO3)2 + 2NO2 + 2H2O

 

HNO3 разб.

 

 


не реагирует не реагирует восстанавливается восстанавливается

с Au, Pt и на холоде до NO с неактивными до NO, N2O, N2 или

некоторыми с Fe, Al, Cr металлами, неметаллами, NH4NO3 (если кислота

другими сложными веществами очень разбавлена или

металлами сказано, что газ не вы –

делялся) с металлами

средней активности и

активными

 

3Cu + 8HNO3 разб.. = 3Cu (NO3)2 + 2NO + 4H2O

Al + 4HNO3 разб. = Al (NO3)3 + NO + 2H2O

8Al + 30HNO3 разб. = 8Al (NO3)3 + 3N2O + 15H2O

10Al + 36HNO3 разб. = 10Al (NO3)3 + 3N2 + 18H2O

8Al + 30HNO3 разб. = 8Al (NO3)3 + 3NH4NO3 + 5H2O

 

Концентрированные H2SO4 и HNO3 реагируют с Fe, Al, Cr только при нагревании:

2Fe + 6H2SO4 конц. = Fe2 (SO4)3 + 3SO2 + 3H2O

Fe + 6HNO3 конц. = Fe (NO3)3 + 3NO2 + 3H2O

 

Концентрированная H2SO4 и HNO3 в любом виде окисляют неметаллы - восстановители - углерод, фосфор, серу - до соответствующих кислот.

 

C + 4HNO3 конц. = CO2 + 2H2O + 4NO2

3C + 4HNO3 разб. = 3CO2 + 2H2O + 4NO

C + 2H2SO4 конц. = CO2 + 2H2O + 2SO2

P + 5HNO3 конц. = H3PO4 + 5NO2 + H2O

3P + 5HNO3 разб. + 2H2O = 3H3PO4 + 5NO

2P + 5H2SO4 конц. = 2H3PO4 + 5SO2 + 2H2O

S +6HNO3 конц. = H2SO4 + 6NO3 + 2H2O

S + 2HNO3 разб. = H2SO4 + 2NO

S +2H2SO4 конц. = 3SO2 +2H2O

 

Концентрированная азотная кислота окисляет йод до йодноватой кислоты:

 

I2 + 10HNO3 = 2HIO3 + 10NO2 + 4H2O

Взаимодействие этих кислот со сложными веществами рассмотрим в следующем разделе.

Особое значение имеет ОВР между соляной и азотной кислотами. Смесь трёх объёмов соляной кислоты и одного объёма концентрированной азотной называют «царская водка», в ней растворяется даже золото, которое алхимики считали царём металлов:

3HCl +HNO3 = Cl2­ + NOCl + 2H2O

 

В ряде случаев между веществами, которые проявляют сильные восстановительные и окислительные свойства, возможны только ОВР, а не реакции обмена:

1. Окислители – соединения железа (III), восстановители – сульфиды, йодиды. При этом катион Fe3+ восстанавливается до катиона Fe2+, сульфид – анион S2-окисляется до серы S0, а йодид – анион I- окисляется до йода I2.

В зависимости от количественного соотношения реагирующих веществ могут получиться различные соединения железа (II):

 

2FeCl3 + H2S = S¯ + 2FeCl2 + 2HCl

2FeCl3 + Na2S = S¯ + 2FeCl2 или 2FeCl3 + 3Na2S = S¯ + FeS + 6NaCl

 

Fe2(SO4)3 + H2S = S¯ + 2FeSO4 +H2SO4

Fe(OH)3 + 6HI = 2FeI2 + I2¯ + 6H2O

Fe2O3 + 6HI = 2FeI2 + I2¯ + 3H2O

2FeCl3 +2HI = 2FeCl2 + I2¯ + 2HCl

2FeCl3 + 2KI = 2FeCl2 + I2¯ + 2KCl

или 2FeCl3 + 6KI = 2FeI2 + I2¯ + 6KCl

Fe2(SO4)3 + 2KI = 2FeSO4 + I2¯ + K2SO4

Fe2(SO4)3 + BaI2 = 2FeSO4 + I2¯ + BaSO4¯

 

2. Окислители – соединения меди (II), восстановители - йодиды. При этом катион Cu2+ восстанавливается до катиона Cu+, а йодид – анион окисляется до йода I2 :

 

2CuSO4 + 4KI = 2CuI¯ + I2¯ + 2K2SO4

2CuCl2 + 4KI = 2CuI¯ + I2¯ + 4KCl

2CuCl2 + 4HI = 2CuI¯ + I2¯ + 4HCl

 

3. Окислитель – азотная кислота, восстановитель – сульфиды, йодиды, сульфиты. При этом азотная кислота, в зависимости от концентрации, восстанавливается до NO2 (концентрированная), до NO (разбавленная); сульфид – анион S2- окисляется до серы S0 или сульфат – аниона SO42-, йодид – анион – до йода I2, a сульфит – анион SO32- - до сульфат – аниона SO42- :

 

8HNO3 конц. + CuS = CuSO4 + 8NO2­ + 4H2O

или 4HNO3 конц.+ CuS = S¯ + 2NO2­ + Cu(NO3)2 + 2H2O

8HNO3 разб.+ 3CuS = 3S¯ + 2NO­ + 3Cu(NO3)2 + 4H2O

4HNO3 конц.+ Na2S = S¯ + 2NO2­ + 2NaNO3 + 2H2O

24HNO3 конц.+ Al2S3 = Al2(SO4)3 + 24NO2­ + 12H2O

2HNO3 разб.+ H2S = 3S¯ + 2NO­ + 4H2O

8HNO3 конц.+ H2S = H2SO4 + 8NO2­ + 4H2O

или 2HNO3 конц.+ H2S = S¯ + 2NO2­ + 2H2O

2HNO3 разб.+ 3K2SO3 = 3K2SO4 + 2NO­ + H2O

6HNO3 конц.+ HI = HIO3 + 6NO2 + 3H2O

2HNO3 конц.+ 2KI = I2 + 2NO2 + H2O

 

4. Окислитель – азотная кислота или серная концентрированная кислота, восстановитель – соединения железа (II). При этом азотная кислота восстанавливается до NO2 или NO, серная – до SO2, а катион Fe2+ окисляется до катиона Fe3+ :

 

Fe(OH)2 + 4HNO3 конц. = Fe(NO3)3 + NO2­ + 3H2O

FeO + 4HNO3 конц. = Fe(NO3)3 + NO2­ + 2H2O

3Fe(NO3)2 + 4НNO3 разб. = 3Fe(NO3)2 + NO­ + 2H2O

2Fe(OH)2 + 4H2SO4 конц. = Fe2(SO4)3 + SO2­ + 6H2O

 

5. Окислитель – серная кислота концентрированная, восстановитель – сульфиды, йодиды и бромиды. При этом серная кислота восстанавливается до SO2, S или H2S; сульфид – анион S2- окисляется до серы S, SO2 или H2SO4; йодид – анион до йода I2, бромид – анион до брома Br2:

CuS + 4H2SO4 конц. = CuSO4 + 4SO2 + 4H2O

H2S + H2SO4 конц. = S¯ + SO2­ + 2H2O

или H2S + H2SO4 конц. = 4SO2 + 4H2O

8HI + H2SO4 конц. = 4I2¯ + H2S­ + 4H2O

или 6HI + H2SO4 конц. = 3I2¯ + S¯ + 4H2O

2HI + H2SO4 конц. = I2¯ + SO2­ + 2H2O

8KI + 9H2SO4 конц. = I2¯ + H2S­ + 8KHSO4 + 4H2O

или 6KI + 2H2SO4 конц. = 3I2¯ + H2S­ + 3K2SO4 + 4H2O

2HBr + H2SO4 конц. = Br2 + SO2­ + 2H2O

2KBr + 2H2SO4 конц. = Br2 + SO2­ + K2SO4 + 2H2O

6KBr + 2H2SO4 конц. = 3Br2 + S¯ + 3K2SO4 + 2H2O

6. Железная окалина – Fe3O4, это смесь двух оксидов - FeO и Fe2O3. Поэтому при взаимодействии с сильными окислителями она окисляется до соединения железа (III) за счёт катионов Fe2+ - восстановителей, а при взаимодействии с сильными восстановителями восстанавливается до соединения железа (II) за счёт катионов Fe3+ - окислителей:

Fe3O4 + 10HNO3 конц. = 3Fe(NO3)3 + NO2­ + 5H2O

3Fе3O4 + 28HNO3 разб. = 9Fe(NO3)3 + NO­ + 14H2O

Fe3O4 + 8HI = 3FeI2 + I2¯ + 4H2O

При взаимодействии с большинством кислот происходит реакция обмена, получаются две соли:

Fe3O4 + 8HCl = FeCl2 + 2FeCl3 + 4H2O

Fe3O4 + 4H2SO4 разб. = FeSO4 + Fe2(SO4)3 + 4H2O

 

Реакции диспропорционирования. Это реакции, в которых атомы одного и того же элемента, входящие в состав одного и того же исходного вещества, повышают и понижают степень окисления. Они очень часто встречаются в заданиях С-2, поэтому их нужно запомнить тем, кто хочет сдать ЕГЭ на высокий балл.

1. Все галогены, кроме F2, диспропорционируют в растворах всех щелочей. При комнатной температуре или на холоде получаются две соли – МГ, МГО и Н2О; при нагревании – две соли: МГ, МГО3 и Н2О.

 

Cl2 +2KOH = KCl + KClO + H2O – на холоде,

3Cl2 + 6KOH = 5KCl +KClO3 + 3H2O – при нагревании,

2Br2 + 2Sr(OH)2 = SrBr2 + Sr(BrO)2 + H2O – на холоде,

6Br2 + 6Sr(OH)2 = 5SrBr2 + Sr(BrO3)2 + 6H2O – при нагревании

Аналогично происходят реакции с растворами карбонатов:

 

Cl2 + K2CO3 = KCl + KClO + CO2 – на холоде,

3Cl2 + 3K2CO3 = 5KCl + KClO3 + 3CO2 – при нагревании.

 

2. Диспропорционирование серы в растворах щелочей:

 

3S + 6KOH = 2K2S + K2SO3 + 3H2O или 4S + 6KOH = K2S2O3 + 2K2S +3H2O

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-11-19 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: