В задачах по курсу общей физики обычно рассматривают вращение твердого тела лишь вокруг неподвижной оси или оси, перемещающейся в пространстве параллельно самой себе. В этом случае все векторные величины, характеризующие вращательное движение тела: направлены вдоль оси вращения, что позволяет сразу переходить к алгебраической (скалярной) записи соответствующих уравнений. Некоторое направление вращения выбирается за положительное, используя, например, направление поступательного движения правого винта (правило буравчика), когда вращение его головки совпадает с направлением вращения твердого тела; естественно, перед величинами, вектора которых антинаправлены положительному направлению, будут использованы знаки «минус». При ускоренном вращении тела знаки всех четырех величин совпадают; при замедленном движении две пары величин
и
имеют противоположные знаки.
Момент силы , действующей на тело, относительно оси вращения определяется по формуле (1.1, раздел 1.1).
Момент импульса тела, вращающегося относительно неподвижной оси, определяется по формуле (1.4). Для определения момента импульса материальной точки с импульсом
относительно начала координат используют выражение (1.6).
Для системы тел используют выражение (например, суммарный момент импульса гири массой
, прикрепленной на шнуре к вращающемуся маховику радиусом
, равен
где
момент импульса движущегося груза
гири,
линейная скорость гири и точек цилиндрической поверхности маховика;
момент импульса, вращающегося с угловой скоростью
и обладающего моментом инерции
, маховика).
Момент инерции тела зависит в общем случае от его массы, расположения массы в теле, размеров и формы тела и положения оси вращения.
|
Момент инерции относительно оси вращения:
а) материальной точки (см. формулу (1.8));
б)дискретного твердого тела (см. формулу (1.9));
в) сплошного твердого тела (см. формулу (1.10)).
В случае непрерывного распределения массы тела (сплошное однородное твердое тело), тело делится на бесконечно малые участки массы и, считая их за материальные точки, находятся моменты инерции этих участков относительно оси вращения, а затем производится интегрирование.
Моменты инерции некоторых тел правильной геометрической формы приведены в таблице 1.
Таблица 1
Тело | Ось, относительно которой определяется момент инерции | Формула момента инерции |
Однородный тонкий стержень массой ![]() ![]() | Проходит через центр тяжести стержня перпендикулярно стержню. Проходит через конец стержня перпендикулярно стержню. | 1/12 ![]() ![]() |
Тонкое кольцо, обруч, труба радиусом ![]() ![]() ![]() ![]() | Проходит через центр перпендикулярно плоскости основания | ![]() |
Круглый однородный диск (цилиндр) радиусом ![]() ![]() | Проходит через центр диска перпендикулярно плоскости основания | 1/2 ![]() |
Однородный шар массой ![]() ![]() | Проходит через центр шара | 2/5 ![]() |
Диск массой ![]() ![]() | Относительно оси вращения, совпадающей с диаметром диска | 1/4 ![]() |
Если ось вращения не проходит через центр масс тела, то момент инерции тела относительно этой оси можно определить по теореме Штейнера: момент инерции тела относительно произвольной оси
равен сумме моментов инерции этого тела
относительно оси вращения О1О2, проходящей через центр масс тела С параллельно оси
, и произведения массы тела на квадрат расстояния
между этими осями (см. Рис. 1), т.е.
.
|
Момент инерции системы отдельных тел равен (например, момент инерции физического маятника равен
, где
момент инерции стержня, на котором крепится диск с моментом инерции
).
Чаще всего при решении задач основное уравнение динамики вращательного движения твердого тела относительно неподвижной оси в случае постоянных момента силы и момента инерции
используется в виде
, где изменение момента импульса вращающего тела равно произведению среднего момента сил, действующего на тело, на время действия этого момента.
В общем случае в момент сил могут входить: вращающий момент сил, момент сил трения, моменты сил натяжения нитей (при решении задач на блоки, через которые перекинута нить и т.д.). При решении задач на блоки необходимо обычно учитывать массу блока, и, следовательно, момент инерции блока, что приводит к тому, что силы натяжения нитей по обе стороны блока не будут одинаковыми и как следствие к появлению вращающего момента сил, равного разности моментов сил по обе стороны блока.