ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ОСИ




Примеры решения задач

Пример 1. Вычислить момент инерции Jz молекулы NО2 относительно оси z, проходящей через центр масс молекулы перпендикулярно плоскости, содержащей ядра атомов. Межъядерное расстояние d этой молекулы равно 0,118 нм, валентный угол =140°.

Решение. Молекулу NO2 можно рассматривать как систему, состоящую из трех материальных точек общей массой

m =2 m 1+ m 2, (1)

где m 1 масса атома кислорода; m 2— масса атома азота.

Расположим молекулу относительно координатных осей так, как это указано на рис. 3.1 (начало координат совместим с центром


масс С молекулы, ось z направим перпендикулярно плоскости чертежа «к нам».)

Для определения Jz воспользуемся теоремой Штейнера:

J=J c+ m a2.

Для данного случая эта теорема запишется в виде Jz' = Jz + m a2, где Jz' момент инерции относительно оси z', параллельной оси z и проходящей через атом азота (точка О на рис. 3.1). Отсюда искомый момент инерции

Jz = Jz' - m a2 (2)

Момент инерции Jz' находим как сумму моментов инерции двух материальных точек (атомов кислорода):

Jz' = 2m1 d2 (3)

Расстояние а между осями z и z ' равно координате xс центра масс системы и поэтому может быть выражено по формуле В данном случае

а= х с= (2 m 1 x 1+ m 2 x 2)/(2 m 1+ m 2), или, учитывая, что x 1= d cos ( /2) и х 2 =0,

(4)

Подставив в формулу (2) значения Jz', т, а соответственно из выражений (3), (1), (4), получим

или после преобразований

(5)

Найдем в табл. 23 относительные атомные массы кислорода (A O=16) и азота N==14) и запишем массы атомов этих элементов в атомных единицах массы (а.е.м.), а затем выразим в килограммах (1 а.е.м. =1,66 •10-27 кг, см. табл. 9):

m 1= 16 1,66 10-27 кг=2,66 10-26 кг;

m 2 = 14 1,66 10-27 кг = 2,32 10-26 кг.

Значения m 1, т 1, d и подставим * в формулу (5) и произведем вычисления:

Jz =6,80 10-46 кг.м2.

Пример 2. Физический маятник представляет собой стержень длиной l =1 м и массой m 1=l кг с прикрепленным к одному из его

*Для вычисления выражения, стоящего в скобках, вместо масс атомов можно подставить их относительные атомные массы, так как здесь массы входят в виде отношения.

концов диском массой т 2 =0,5 m 1. Определить момент инерции J zтакого маятника относительно оси Оz, проходящей через точку О на стержне перпендикулярно плоскости чертежа (рис. 3.2).

Решение. Общий момент инерции маятника равен сумме моментов инерции стержня Jz1 и диска Jz2.

Jz = Jz1 + Jz2 (1)

Формулы, по которым вычисляются моменты инерции стержня Jz1 и диска Jz2 относительно осей, проходящих через их центры масс, даны в табл. на с. 41. Чтобы определить моменты инерции Jz1 и Jz2, надо воспользоваться теоремой Штейнера:

J=Jc+ma2. (2)

Выразим момент инерции стержня согласно формуле (2):

Jz1=l/12m1l2+m1a12.

Расстояние a 1 между осью Оz и параллельной ей осью, проходящей через центр масс C1 стержня, как следует из рис. 3.2, равно 1/2 l— l/3 l= l/6 l. С учетом этого запишем

Jz 1 = l/12 m 1 l 2+ m 1 (l/6 l)2=1/9 m 1 l 2=0,111 m 1 l 2.

Момент инерции диска в соответствии с формулой (2) равен рис. 3.2

Jz 2=l/2 m 2 R 2+ m 2 a 22.

где R — радиус диска; R= 1/4 l. Расстояние а 2 между осью Оz и параллельной ей осью, проходящей через центр масс диска, равно (рис. 3.2) 2/3 l— l/4 l= l1/12 l. С учетом этого запишем

Jz 2=l/2 m 2 (1/4 l)2+ m 2(l1/12 l)2= 0,0312 m 1 l 2 + 0,840 m 1 l 2= 0,871 m 1 l 2.

Подставив полученные выражения Jz1 и Jz2 в формулу (1), найдем

Jz= 0,111 m 1 l 2+0,871 m 1 l 2=)0,111 m 1+0,871 m 1) l 2,

или, учитывая, что т 2 =0,5 m 1,

Jz= 0,547 m 1 l 2.

Произведя вычисления, получим значение момента инерции физического маятника относительно оси Оz:

Jz =0,547.1.1 кг м2=0,547 кг м2.

Пример 3. Вал в виде сплошного цилиндра массой m 1 = 10 кг насажен на горизонтальную ось. На цилиндр намотан шнур, к свободному концу которого подвешена гиря массой m 2=2 кг (рис. 3.3). С каким ускорением а будет опускаться гиря, если ее предоставить самой себе?

Решение. Линейное ускорение а гири равно тангенциальному ускорению точек вала, лежащих на его цилиндрической поверхности,


и связано с угловым ускорением s вала соотношением

а= , (1)

где r — радиус вала.

Угловое ускорение вала выражается основным уравнением динамики вращающегося тела:

=M/ J, (2)

где М — вращающий момент, действующий на вал; J — момент инерции вала. Рассматриваем вал как однородный цилиндр. Тогда его момент инерции относительно геометрической оси равен

J= 1/2 m 1 r 2.

Вращающий момент М, действующий на вал, равен произведению силы натяжения Т шнура на радиус вала: М=Тr.

Силу натяжения шнура найдем из следующих соображений. На гирю действуют две силы: сила тяжести m 2 g, направленная вниз, и сила натяжения Т шнура, направленная вверх. Равнодействующая этих сил вызывает равноускоренное дви­жение гири. По второму закону Ньютона, m 2g- T=m2a, откуда T=m2(g-а). Таким образом, вращающий момент M=m 2 (g—а)r.

Подставив в формулу (2) полученные выражения М и J, найдем угловое ускорение вала:

 

Для определения линейного ускорения гири подставим это рис. 3.3 выражение в формулу (1). Получим

,

откуда

Пример 4. Через блок в виде диска, имеющий массу m =80 г, перекинута тонкая гибкая нить, к концам которой подвешены грузы массами m 1=100 г и m 2=200 г (рис. 3.4). С каким ускорением будут двигаться грузы, если их предоставить самим себе? Трением пренебречь.

Решение. Применим к решению задачи основные законы поступательного и вращательного движения. На каждый из движущихся грузов действуют две силы: сила тяжести mg, направленная вниз, и сила Т натяжения нити, направленная вверх.

Так как вектор ускорения а груза m 1 направлен вверх, то T 1>m1g. Равнодействующая этих сил вызывает равноускоренное движение и, по второму закону Ньютона, равна T 1т 1 g=т 1 а, откуда

T 1 =m 1 g+m 1 a. (1)


Рис. 3.4

Вектор ускорения а груза т 2 направлен вниз; следовательно, T 2< m 2 g. Запишем формулу второго закона для этого груза:

m 2g — T 2 =m2a, откуда

T 2 =m2g- m2а. (2)

Согласно основному закону динамики вращательного движе­ния, вращающий момент М, приложенный к диску,равен произведению момента инерции J диска на его угловое ускорение :

M=J . (3)

Определим вращающий момент. Силы натяжения нитей действуют не только на грузы, но и на диск. По третьему закону Ньютона, силы и , приложенные к ободу диска, равны соответственно силам T 1 и Т 2, но по направлению им противоположны. При движении грузов диск ускоренно вращается по часовой стрелке; следовательно, > . Вращающий момент, приложенный к диску, равен произведению разности этих сил на плечо, равное радиусу диска, т. е. M=( - ) r. Момент инерции диска J=mr 2 /l, угловое ускоре­ние связано с линейным ускорением грузов соот­ношением S =a/r. Подставив в формулу (3) выраже­ния М, J и , получим

( - ) r = .

откуда

- =(т/2)а.

Так как =T 1 и = Т 2, то можно заменить силы и вы­ражениями по формулам (1) и (2), тогда

m 2 g—m 2 a—m 1 g—m 1 =(m/2)a, или

(m 2 —m 1 ) g=(m 2+ m 1+ m /2) a

откуда

(4)

Отношение масс в правой части формулы (4) есть величина безразмерная. Поэтому значения масс m 1, m 2 и m можно выразить в граммах, как они даны в условии задачи. После подстановки

получим

Пример 5. Маховик в виде диска массой m =50 кг и радиусом г=20 см был раскручен до частоты вращения n1=480 мин"1 и за­тем предоставлен самому себе. Вследствие трения маховик остано­вился. Найти момент М сил трения, считая его постоянным для


двух случаев: 1) маховик остановился через t =50 с; 2) маховик до полной остановки сделал N=200 оборотов.

Решение. 1.По второму закону динамики вращательного движения, изменение момента импульса вращающегося тела равно произведению момента силы, действующего на тело, на время дей­ствия этого момента:

M t=J — J ,

где J — момент инерции маховика; и — начальная и конеч­ная угловые скорости. Так как =0 и t = t, то Mt=—J , от­куда

M= —J /t. (1)

Момент инерции диска относительно его геометрической оси равен J=1/2mr2. Подставив это выражение в формулу (1), найдем

M=—mr2 /(2t). (2)

Выразив угловую скорость через частоту вращения n 1 и произведя вычисления по формуле (2), найдем

М= —1 Н м.

2. В условии задачи дано число оборотов, сделанных махови­ком до остановки, т. е. его угловое перемещение. Поэтому приме­ним формулу, выражающую связь работы с изменением кинетиче­ской энергии:

или, учтя, что ,

. (3)

Работа при вращательном движении определяется по формуле A=Mj. Подставив выражения работы и момента инерции диска в формулу (3), получим

M = —mr2 /4.

Отсюда момент силы трения

М= —mr2 /4 . (4)

Угол поворота j=2лN=2 3,14 200 рад=1256 рад. Произведя вычисления по формуле (4), получим

М= —1 Н м.

Знак минус показывает, что момент силы трения оказывает тормозящее действие.

Пример 6. Платформа в виде диска радиусом R= 1,5 м и массой m 1 = 180 кг вращается по инерции около вертикальной оси с часто­той n=10 мин-1. В центре платформы стоит человек массой т 2=60 кг. Какую линейную скорость относительно пола помещения будет иметь человек, если он перейдет на край платформы?

Решение. По закону сохранения момента импульса,

(1)

где J 1 — момент инерции платформы; J 2 момент инерции че­ловека, стоящего в центре платформы; — угловая скорость платформы с человеком, стоящим в ее центре; J2' — момент инерции


человека, стоящего на краю платформы; — угловая скорость платформы с человеком, стоящим на ее краю.

Линейная скорость человека, стоящего на краю платформы, связана с угловой скоростью соотношением

. (2)

Определив из уравнения (1) и подставив полученное выражение в формулу (2), будем иметь

v=(J 1 +J 2 ) R/(J 1 +J' 2 ). (3)

Момент инерции платформы рассчитываем как для диска; сле­довательно, J 1= 112m 1 R2 Момент инерции человека рассчитываем как для материальной точки. Поэтому J 2=0, J' 2 =m 2 R 2. Угловая скорость платформы до перехода человека равна .

Заменив в формуле (3) величины J 1, J 2, J' 2. и их выражениями, получим

Сделав подстановку значений т 1, т 2, п, R и , найдем линей­ную скорость человека:

Пример 7. Человек стоит в центре скамьи Жуковского и вместе с ней вращается по инерции. Частота вращения n 1=0,5 c-1. Момент инерции jo тела человека относи-

Рис. 3.5

тельно оси вращения равен 1,6 кг м2. В вытянутых в стороны руках человек держит по гире массой m =2 кг каждая. Расстояние между гирями l 1=l,6 м. Опре­делить частоту вращения n 2, скамьи с человеком, когда он опустит руки и расстояние l 2 между гирями станет равным 0,4 м. Моментом инерции скамьи пренебречь.

Решение. Человек, держащий гири (рис. 3.5), составляет


вместе со скамьей замкнутую механическую систему *, поэтому момент импульса J этой системы должен иметь постоянное значе­ние. Следовательно, для данного случая

J1 = J2 ,

где J и — момент инерции тела человека и угловая скорость скамьи и человека с вытянутыми руками; J 2 и — момент инер­ции тела человека и угловая скорость скамьи и человека с опу­щенными руками. Отсюда

= (J 1/ J 2) .

Выразив в этом уравнении угловые скорости и через частоты вращения n1 и n2( =2 n) и сократив на 2 , получим

n2=(J1/J2)n1. (1)

Момент инерции системы, рассматриваемой в данной задаче, равен сумме момента инерции тела человека J0 и момента инерции гирь в руках человека. Так как размер гирь много меньше рас­стояния их от оси вращения, то момент инерции гирь можно опре­делить по формуле момента инерции материальной точки: J=mr2. Следовательно **,

J 1= J 0+2 m (l 1/2)2;

 

где т — масса каждой из гирь; l 1 и l 2. — первоначальное и конеч­ное расстояние между гирями. Подставив выражения J 1 и J 2 в уравнение (1), полу­чим

(2)

Выполнив вычисления по формуле (2), найдем

n 2==1,18 с-1.

 

СИЛЫВ МЕХАНИКЕ

 

 

Примеры решения задач

Пример 1. Определить вторую космическую скорость υ2 ракеты, запущенной с поверхности Земли.

Примечание. Второй космической (или параболической) скоростью υ2 называется минимальная скорость, которую нужно сообщить телу, чтобы оно удалилось с поверхности Земли в бесконечность (при этом сопротивление воздуха в расчет не принимается и предполагается, что на тело действует только поле тяготения Земли).

 

Решение. При удалении тела массой т в бесконечность его потенциальная энергия возрастает за счет убыли кинетической энер­гии и в бесконечности достигает максимального значения, равного нулю. Согласно определению второй космической скорости, кине­тическая энергия в бесконечности также равна нулю. Таким обра­зом, в бесконечности Т∞=0 и П∞ =0. В соответствии с законом сохранения энергии в механике

, или ,

где М — масса Земли. Отсюда находим Преобразуем эту формулу, умножив и разделив подкоренное выражение на R:

Так как (где g — ускорение свободного падения у
поверхности Земли), то

Подставив в эту формулу значения g и R и произведя вычисле­ния, получим

Пример 2. Ракета установлена на поверхности Земли для за­пуска в вертикальном направлении. При какой минимальной ско­рости υ1, сообщенной ракете при запуске, она удалится от поверхности на расстояние, равное радиусу Земли ? Силами, кроме силы гравитационного взаимодействия ракеты и Земли, пренебречь.

Решение. Чтобы определить минимальную скорость V1 ра­кеты, надо найти ее минимальную кинетическую энергию T1. Для этого воспользуемся законом сохранения механической энергии. Этот закон выполняется для замкнутой системы тел, в которой дей­ствуют только консервативные силы.

Систему ракета — Земля можно считать замкнутой. Единствен­ная сила, действующая на систему,— сила гравитационного взаи­модействия, являющаяся консервативной.

В качестве системы отсчета выберем инерциальную систему от­счета, так как только в такой системе справедливы законы динами­ки и, в частности, законы сохранения. Известно, что система отсчета, связанная с центром масс замкнутой системы тел, является инерциальной. В рассматриваемом случае центр масс системы ракета — Земля будет практически совпадать с центром Земли, так как масса М Земли много больше массы m ракеты. Следовательно, систему отсчета, связанную с центром Земли, можно считать практически инерциальной. Согласно закону сохранения механической энергии, запишем

(1)

где T1 и П1 — кинетическая и потенциальная энергия системы раке­та — Земля в начальном состоянии (на поверхности Земли); Т1 и П2 — те же величины в конечном состоянии (на расстоянии, равном радиусу Земли).

В выбранной системе отсчета кинетическая энергия Земли равна
нулю. Поэтому T1 есть просто начальная кинетическая энергия
ракеты: . Потенциальная энергия системы в начальном
состоянии * .

По мере удаления ракеты от поверхно­сти Земли ее потенциальная энергия будет возрастать, а кинетиче­ская — убывать. В конечном состоянии кинетическая энергия Т1 станет равной нулю, а потенциальная энергия П2 достигнет макси­мального значения:

Подставив значения T1, П1, T2 и П2 в выражение (1), получим

откуда после сокращения на m найдем

Заметив, что (g — ускорение свободного падения у по­верхности Земли), перепишем эту формулу в виде

что совпадает с выражением для первой космической скорости (см. пример 1). Подставив числовые значения величин и произведя вычисления, получим

Пример 3. Найти выражение для потенциальной энергии П гра­витационного взаимодействия Земли и тела массой m, находящегося на расстоянии r от центра Земли за пределами ее поверхности. По­строить график П(r).

Решение. Потенциальная энергия в поле консервативных сил (гра-

витационные силы консервативны) связана с силой следую­щим соотношением:

* Потенциальная энергия гравитационного взаимодействия тел, беско­нечно удаленных друг от друга, принимается равной нулю

где i, j, k — единичные векторы осей координат (орты); —частные производные потенциальной энергии по соот­ветствующим координатам. В случае, когда поле сил обладает сфе­рической симметрией, это выражение упрощается. Если ось х совместить с радиусом-вектором r, направленным по радиусу сферы,

то и обращаются в нуль и тогда . Так как ве-­
кторы r и i совпадают (рис. 4.3) и П зави-­
сит только от r, то

(1)
Запишем в векторной форме закон все­ мирного тяготения:

 

 

Рис.4.3 (2)

где G — гравитационная постоянная; М — масса Земли.

Сравнивая выражения (1) и (2), найдем откуда

Взяв от этого равенства неопределенный интеграл, получим

где С — постоянная интегрирования.

Полученное выражение показывает, что потенциальная энергия может быть определена лишь с точностью до некоторой произволь­ной постоянной.

1. Если принять потенциальную энергию бесконечно удаленных друг от друга тел равной нулю, то постоянная С обращается в нуль. В этом случае запишем

 

Соответствующая зависимость П(r) изображается графиком, представленным на рис. 4.4.

2. Если же принять потенциальную энергию равной нулю на

поверхности Земли, то и тогда

Но так как r=R+h, где h — высота тела над поверхностью Земли, то

Если , то , или, так как ,

Пример 4. В гравитационном поле Земли тело массой m переме­щается из точки 1 в точку 2 (рис. 4.5). Определить скорость v2 тела в точке 2, если в точке 1 его скорость

Ускорение свободного падения g считать известным.

Решение. Система те­ло — Земля является замкнутой, в которой действует

Рис. 4.5

 

Рис. 4.4

 

консервативная сила — сила гравитационного взаимодействия. Поэтому можно воспользоваться законом сохранения механической энергии (инерциальную систему отсчета свяжем с центром масс системы). Тогда можно записать

E1=E2, или T1122,

где T1, П1 и Т2, П2 — соответственно кинетические и потенциальные
энергии в начальном 1 и конечном 2 состояниях. Заметим, что центр
масс системы тело — Земля практически совпадает с центром масс
Земли , и поэтому кинетическая энергия Земли в начальном
и конечном состояниях равна нулю. Тогда

Подставив эти выражения в (1), получим

Заменив и произведя сокращения, найдем
+ , откуда

Так как (по условию задачи), то

Произведя вычисления, получим

Пример 5. Вычислить работу А12 сил гравитационного поля Земли при перемещении тела массой m= 10 кг из точки 1 в точку 2 (рис. 4.5). Радиус R земли и ускорение g свободного падения вблизи поверхности Земли считать известными.

Решение. Для решения задачи воспользуемся соотношением между работой А и изменением ΔП потенциальной энергии. Так как силы системы — гравитационные — относятся к силам консерва­тивным, то работа сил поля совершается за счет убыли потенциаль­ной энергии, т. е.

(1)

где П1 и П2 — потенциальные энергии системы тело — Земля соот­ветственно в начальном и конечном ее состояниях.

Условимся, что потенциальная энергия взаимодействия тела и Земли равна нулю, когда тело находится на бесконечно большом расстоянии от Земли, тогда на расстоянии r потенциальная энергия

выразится равенством , где М — масса Земли.

Для расстояний r1=3R и r2=2R, заданных в условиях задачи (рис. 4.5), получим два выражения потенциальной энергии:

Подставив эти выражения П1 и П2 в формулу (1), получим

Заметив, что , преобразуем последнее выражение к
виду

Подставив значения т, g, R в это выражение и произведя вычисления, найдем

Пример 6. Верхний конец стального стержня длиной l = 5 м с площадью поперечного сечения S = 4 см2 закреплен неподвижно, к нижнему подвешен груз массой т = 2-103 кг. Определить: 1) нор­мальное напряжение а материала стержня; 2) абсолютное х и относительное ε удлинения стержня; 3) потенциальную энергию П растянутого стержня.

Решение. 1. Нормальное напряжение материала растяну­того стержня выражается формулой σ=F/S, где F — сила, дейст­вующая вдоль оси стержня. В данном случае F равна силе тяжести mg и поэтому можем записать

Сделав вычисления, найдем

2. Абсолютное удлинение выражается формулой

где Е — модуль Юнга.

Подставив значения величин F, l, S и Е в эту формулу (значе­ние E взять из табл. 11) и произведя вычисления, получим

Относительное удлинение стержня

3. Потенциальная энергия растянутого стержня ,
где V — объем тела, равный S×l. Поэтому

Выполнив вычисления по этой формуле, получим

N= 12,1 Дж.

Пример 7. Из пружинного пистолета был произведен выстрел вертикально вверх. Определить высоту h, на которую поднимается пуля массой m = 20 г, если пружина жесткостью k = 196 Н/м была сжата перед выстрелом на х = 10 см. Массой пружины пренебречь.

Решение. Система пуля — Земля (вместе с пистолетом) яв­ляется замкнутой системой, в которой действуют консервативные силы — силы упругости и силы тяготения. Поэтому для решения задачи можно применить закон сохранения энергии в механике. Согласно этому закону, полная механическая энергия Е1 системы в начальном состоянии (в данном случае перед выстрелом) равна полной энергии Е2 в конечном состоянии (когда пуля поднялась на высоту h), т. е.

E1=E2, или T11=T22, (1)
где T1 и T2 — кинетические энергии системы в начальном и конеч-­
ном состояниях; П1 и П2— потенциальные энергии в тех же состоя­-
ниях.

Так как кинетические энергии пули в начальном и конечном со­стояниях равны нулю, то равенство (1) примет вид

П1= П2. (2)

Если потенциальную энергию в поле тяготения Земли на ее по­верхность принять равной нулю, то энергия системы в начальном состоянии равна потенциальной энергии сжатой пружины, т. е.

, а в конечном состоянии — потенциальной энергий пули на высоте Л, т. е.

Подставив приведенные выражения П1 и П2 в формулу (2), найдем

Произведя вычисления по последней формуле, получим h= 5 м.


 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-11-19 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: