Дифференцирование комплексных функций




Функция фактически задаёт отображение плоскости в плоскости, то есть пара действительных чисел отображается в пару чисел . Для двух функций и существуют 4 частных производных: .

Определение производной. Производной функции в точке называется следующий предел: .

Также можно кратко записать в виде .

Заметим, что все величины в этой дроби, существуют и вычислимы, ведь здесь частное от разностей комплексных чисел.

Определение дифференцируемости. Функция называется дифференцируемой в точке , если приращение функции можно представить в виде: , где некоторое комплексное число, - бесконечно малая более высокого порядка, чем .

Заметим, что если функция дифференцируема, то , но тогда т.е. тогда , т.е. константа .

Геометрический смысл производной. Так как с точностью до бесконечно-малой, можно представить , а это линейное отображение, изученное в конце прошлой лекции, то в малой окрестности отображение представимо в виде растяжения и поворота, где это угол поворота, а - коэффициент растяжения.

 

Изучим взаимосвязь дифференцируемости с дифференцируемостью координатных функций и .

Теорема 1. Функция дифференцируема и дифференцируемы и выполняются условия Коши-Римана:

и .

Доказательство (ДОК 10). Запишем подробнее равенство . .

Раскроем скобки и сгруппируем слагаемые, в которых есть и в которых нет мнимой единицы.

 

Получается такая система из двух равенств:

Если в 1-м уравнении рассмотреть приращение только по оси , тогда , то

= , так как бесконечно малая более высокого порядка, так что при делении на величину первого порядка предел равен 0. Итак, .

Если теперь во 2-м уравнении рассмотреть приращение только по оси , то аналогично получится = , т.е. . Итак, .

По аналогии с этими рассуждениями, если в 1-м равенстве вычислять предел при сдвиге только по оси , а во 2-м по , получим

, , откуда второе условие Коши-Римана .

А для доказательства достаточности, можно наоборот, сложить два равенства:

,

умножив при этом второе на . Если выполнены условия Коши-Римана, то 4 коэффициента при этом не являются 4-мя разными числами, а попарно совпадают, то мы как раз и получим:

Вывод. Итак, и должны быть взаимосвязаны, т.е. если мы произвольно зададим две какие-то функции , и составим из них , то не всегда получим какую-то дифференцируемую комплексную функцию.

Пример. Проверить выполнение условий Коши-Римана для функции .

= = = .

, .

, они равны (1-е условие Коши-Римана).

, они противоположны (а это и есть

2-е условие Коши-Римана).

А сейчас мы рассмотрим функцию, для которой не выполнены условия Коши-Римана.

Пример. . Тогда , . Не выполняется 1-е условие: , , они не равны ни в одной точке.

Геометрически это означает, что зеркальное отражение плоскости невозможно представить в виде композиции растяжения и поворота, то есть невозможно равенство из условия дифференцируемости .

Теорема 2. дифференцируемая функция векторные поля

и являются потенциальными.

Доказательство (ДОК 11). Вспомним условие потенциальности поля , а именно, . Для векторного поля в таком случае, , , и тогда условие потенциальности эквивалентно первому условию Коши-Римана .

Для векторного поля соответственно, , , и тогда условие потенциальности эквивалентно второму условию Коши-Римана: .

.

Определение. Если функция дифференцируема и в самой точке , и во всех точках некоторой её окрестности, то она называется аналитической в точке .

Пример. Для функции условия Коши-Римана выполняются независимо от точки, то есть во всех точках плоскости, тогда для каждой точки они автоматически выполнены и во всей её окрестности. Таким образом, аналитическая во всех точках комплексной плоскости.

Различие понятий аналитичности и дифференцируемости видно на другом примере.

Пример. . Распишем её через .

= = . Здесь , .

, .

1-е условие Коши-Римана выполняется только при

, .

2-е условие Коши-Римана выполняется только при .

Таким образом, единственная точка в плоскости, где выполнены условия Коши-Римана, это (0,0). Но ни в одной точке из её окрестности они не выполняются, а только в одной изолированной точке . То есть, в начале координат функция дифференцируемая, но не аналитическая.

 

Теорема 3. Если функция является аналитической в некоторой области D, то для каждой из её частей (действительной и мнимой) в этой области выполняется уравнение Лапласа:

и .

Доказательство. (ДОК 12).

Запишем 2 условия Коши-Римана. Одно продифференцируем по переменной , а второе по :

.

Сложим теперь эти 2 равенства, но при этом смешанные производные 2 порядка от при этом совпадают, они вычитаются и дают 0.

. Итак, .

Теперь снова запишем условия Коши-Римана, 1-е дифференцируем по , а второе по .

.

Теперь вычтем из 1-го равенства 2-е.

, тогда .

 

 


ЛЕКЦИЯ 4. 23.09.2019

ЛЕКЦИЯ 5. 30.09.2019

ЛЕКЦИЯ 6. 07.10.2019

ЛЕКЦИЯ 7. 14.10.2019

ЛЕКЦИЯ 8. 21.10.2019

ЛЕКЦИЯ 9. 28.10.2019

ЛЕКЦИЯ 10. 11.11.2019

ЛЕКЦИЯ 11. 18.11.2019

ЛЕКЦИЯ 12. 25.11.2019

ЛЕКЦИЯ 13. 02.12.2019

ЛЕКЦИЯ 14. 09.12.2019

ЛЕКЦИЯ 15. 16.12.2019

ЛЕКЦИЯ 16. 23.12.2019

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-10-17 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: