Введение.
Хромосомы и хромосомные болезни.
Стоматологические проявления наследственных болезней и синдромов.
Заключение.
Список литературы.
Введение.
Одним из разделов наследственной патологии (соответствующие больные занимают почти 25 % коечного фонда всего мира) являются хромосомные болезни. К ним можно отнести группу болезней, вызываемых числовыми или структурными изменениями хромосом либо их сочетанием, что обнаруживается при специальном анализе ядер клеток — кариологическом исследовании.
Черепно- лицевые аномалии, в частности морфологические изменения в зубах, могут быть обусловлены хромосомными аберрациями, генной мутацией, а так же совместными действиями многих генов и факторов среды. такие мультифакторные заболевания являются распространенной группой наследственных заболеваний и врожденных пороков развития.
Различные симптомы и болезни, при которых поражается черепно- лицевая область, нередко ассоциируется с изменениями в других органах и системах организма. Следовательно, для современной диагностики, профилактики и лечения необходимо сотрудничество клиницистов различного профиля и генетиков. Стоматологу- педиатору, ортодонту очень важно знать стоматологические проявления наследственных болезней и синдромов. Раннее их выявление совместно с педиатором, генетиком необходимо для определения прогноза и выбора правильного метода лечения.
Хромосомы и хромосомные болезни.
У высших организмов связь поколений осуществляется через половые клетки. Клетка — единое целое, и все ее структурные и биохимические компоненты тесно взаимосвязаны между собой. Еще в начале нашего века было установлено, что клетка имеет высокоспециализированные структурные элементы, которые определяют наследственную преемственность свойств организма. Этими элементами являются хромосомы (от греческого слова «хромое» — красящийся), которые включают в себя единицы наследственной информации — гены. Таким образом, каждая клетка является хранителем наследственной информации. Клетка имеет цитоплазму и ядро. Функции хранения и передачи наследственной информации в основном связаны с хромосомами клеточного ядра. Информация, содержащаяся в хромосомах оплодотворенного яйца, во время индивидуального развития должна быть передана всем клеткам тела. Передача информации от материнской клетки дочерним осуществляется во время клеточного деления при активном участии ядра и цитоплазмы. Специфическое значение в точном распределении хромосом между дочерними клетками принадлежит центросоме и митотическому аппарату клетки.
|
Для каждого биологического вида характерно постоянное число хромосом. У большинства высших организмов каждая клетка содержит диплоидный (2п) хромосомный набор. Хромосомы отличаются друг от друга формой и размерами. Совокупность количественных и качественных признаков хромосом, определяемая при микроскопировании в единичной клетке, называется кариотипом.
Нормальное диплоидное число хромосом у человека равно 46. Из-за несовершенства цитологической техники общее число хромосом у человека долго (с 1912 по 1956 г.) считали равным 48. В 1956 г. шведские цитологи J. H. Tijo и A. Levan применив усовершенствованную цитологическую методику, на материале культуры фибро-бластов легочной ткани 4 человеческих эмбрионов показали, что модельное число хромосом у человека равно 46. Эти данные в том же году были подтверждены английскими цитологами С. Е. Ford и J. L. Hamerton (1956). Эти два сообщения стали началом бурного развития цитогенетики человека.
|
Среди многих методов изучения наследственной патологии цитогенетический метод занимает важное место. С его помощью можно провести анализ материальных основ наследственности и кариотипа человека в норме и при патологии, изучить некоторые закономерности мутационного и эволюционного процессов. Все хромосомные болезни у человека были открыты этим методом. Он незаменим для дифференциальной диагностики многих врожденных и наследственных болезней. Овладеть им в условиях клинической лаборатории с соответствующей аппаратурой и реактивами несложно.
Кариотип человека определяется 46 хромосомами. Это число хромосом содержится в соматических клетках, половые клетки имеют набор в 2 раза меньший — 23 хромосомы. Из 46 хромосом человека 22 пары одинаковы у мужчин и женщин, их называют аутосомами. Они имеют порядковый номер от 1-го (самая крупная с центромерой в середине) до 22-го (самая маленькая с центромерой у края). В 23-й паре имеется отчетливая половая дифференцировка: в клетках тела у женщин находятся две крупные вполне идентичные друг другу хромосомы X, у мужчин имеется только одна хромосома X, а ее партнером служит маленькая хромосома У. Хромосомы Х и У называют половыми хромосомами.
|
При цитогентическом исследовании для того, чтобы ответить на вопрос, нормален ли хромосомный набор или имеется какая-либо аномалия, существенное значение приобретает правильный отбор метафазных пластинок. Для этого необходимы следующие условия: цельность метафазной пластинки; отсутствие или небольшое число взаимных наложений хромосом, средняя степень их конденсации (спирализации); обособленность метафазных пластинок друг от друга. Соблюдение этих правил позволяет в целом провести правильную идентификацию хромосом. Хромосомный анализ проводят в несколько этапов: визуальный анализ хромосомных препаратов; анализ хромосом с помощью зарисовки; анализ хромосом с помощью фотосъемки и раскладки кариотипа. Данные цитогенетических исследований заносят в специальные бланки — протоколы.
Из всех 23 пар хромосом с помощью рутинного метода можно идентифицировать только хромосомы 1; 2; 3;16 и У. Остальные хромосомы трудно различимы. Именно невозможность идентификации каждой хромосомы с помощью рутинного метода существенно ограничивала цитогенетическую диагностику и классификацию хромосомных болезней. Только с освоением новых методических подходов к изучению хромосом удалось, наконец, решить этот вопрос.
Линейная исчерченность хромосом выявляется после воздействия на них некоторых солевых растворов со строго заданным значением рН и определенным температурным режимом и с последующей окраской флюоресцирующими (Q-окраска) или основными красителями типа раствора Гимзы (G- и С-окраска). Помимо указанных способов окраски хромосом, применяют и другие специфические методы, которые позволяют избирательно окрашивать участки тех или иных хромосомных районов.
Наиболее информативным из них является метод С-окраски, который позволяет выявлять плотнокрасящи-еся сегменты, расположенные в центромерных или около-центромерных участках всех хромосом, а также в коротких плечах хромосом 13—15; 21—22 и в длинном плече хромосомы Y. С помощью этого метода обнаруживается так называемый структурный гетерохроматин. Значение метода С-окраски состоит в том, что он, выявляя структурный гетерохроматин во всех хромосомах, позволяет лучше, чем какой-либо другой метод, оценивать хромосомный полиморфизм у человека, т. е. межиндивидуальные различия по отдельным хромосомам. Для полиморфизма хромосом человека характерны наличие определенного варианта строения хромосомы во всех клетках, его передача от родителей к детям как простого моногенного признака, отсутствие заметного фенотипического эффекта. Уже твердо установлено, что истинный полиморфизм хромосом обусловлен вариабельностью в размерах их гетерохроматиновых районов.
Нормальная изменчивость, ранее обнаруживаемая лишь для немногих хромосом набора и у отдельных индивидов, на самом деле явление, широко распространенное. У каждого индивида оно проявляется специфическим сочетанием вариантов хромосом, и неограниченное число подобных сочетаний обеспечивает уникальность кариотипа каждого человека.
Использование новых методов современной генетики и генной инженерии позволило медицинским генетикам выявлять и клонировать участки хромосомной ДНК,.отвечающие за проявление наследственных дефектов, и использовать их в качестве основного материала в пренатальной диагностике.
Рассмотрим проблему пола в плане цитогенетики более подробно. В 1949 г. М. L. Вагг и Е. С. Вег при изучении клеток животных установили генетическую разницу между полами. В 1954 г. К. L. Moore и М. L. Вагг эту генетическую особенность подтвердили, исследуя клетки человека. Были обнаружены два типа клеток. В ядрах соматических клеток нормальной женщины была выявлена компактная хроматиновая глыбка, названная половым хроматином, или тельцем Барра, а в ядрах клеток нормального мужчины такая глыбка отсутствовала. Впоследствии установили, что обнаруженное тельце представляет собой неактивную хромосому .X. Тельце Барра чаще всего располагается на периферии у ядерной мембраны и его форма варьирует от треугольной до выпуклой. Для выявления полового хроматина обычно применяют анализ эпителиальных клеток в соскобе слизистой оболочки щеки. Наличие или отсутствие тельца Барра характеризует набор хромосом X, а следовательно, и пол индивида. Оказалось, что тельце Барра образуется из одной хромосомы X. Поэтому у женщин обнаруживается тельце Барра, а у мужчин — нет. В случае хромосомных аномалий телец Барра всегда на одно меньше, чем хромосом X.
Изучение строения и функционирования хромосому человека имеет большое теоретическое и практическое значение для медицинской генетики. Знание того, что представляет собой каждая хромосома человека в химическом, цитологическом и генетическом отношении, важно для правильного понимания происхождения хромосомных нарушений и обусловленных ими аномалий развития, а следовательно, и поиска путей исправления этих отклонений.
Хромосомные болезни клиницисты начали изучать еще до установления точного числа хромосом человека. Например, синдромы Клайнфелтера и Шерешевского — Тернера были четко описаны до открытия хромосомной этиологии этих заболеваний и хорошо известны врачам. К хромосомным болезням относят такие формы патологии, при которых наблюдаются, как правило, нарушения психики и множественные врожденные пороки различных систем организма человека. Генетической основой таких состояний являются хромосомные мутации — численные или структурные изменения хромосом, наблюдаемые в соматических или половых клетках.
Термин «болезнь» по отношению к хромосомным аномалиям, как аутосомных, так и половых хромосом, употребляется не совсем справедливо. Болезнь — это процессуальность, т. е. закономерная смена симптомов и синдромов во времени. Болезнь имеет продрому, начало, стадию полного развития и исходное состояние. Совокупность же специфических признаков, характеризующих любую хромосомную аномалию, является конституцио-нальной, врожденной и признаки эти непрогредиентны.
Большинство хромосомных болезней возникает спорадически в результате геномной и хромосомной мутаций в гаметах здоровых родителей или на первых делениях зиготы. Хромосомные изменения в гаметах приводят к развитию так называемых полных, или регулярных, форм нарушения кариотипа, а соответствующие изменения хромосом на ранних стадиях развития эмбриона являются причиной возникновения соматического мозаицизма, или мозаичных организмов (наличие в организме двух или более клеточных линий с разным числом хромосом). Мозаицизм может касаться как половых хромосом, так и аутосом. Мозаики, как правило, имеют более «стертые» формы заболевания, чем люди с измененным числом хромосом в каждой клетке. Так, ребенок с мозаичным вариантом болезни Дауна может иметь нормальный интеллект, но физические признаки этого заболевания остаются.
Число аномальных клеток может быть различным: чем их больше, тем более ярко выражен симптомокомплекс той или иной хромосомной болезни. В некоторых случаях удельный вес аномальных клеток так невелик, что человек кажется фенотипически здоровым.
В некоторых случаях установить мозаицизм оказывается не так просто, поскольку клон аномальных клеток имеет в онтогенезе тенденцию к элиминации. Иначе говоря, число таких клеток может быть у взрослого человека относительно мало, в то время как в эмбриональный и ранний постнатальный период их удельный вес был достаточно велик, что привело к развитию выраженных клинических симптомов болезни. Однако, несмотря на известные трудности изучения мозаицизма, его открытие и исследование вносят ясность в проблему стертых и рудиментарных форм хромосомных болезней.
В основе классификации хромосомных болезней лежат типы мутаций. Хромосомные мутации (числовые или структурные) возможны в соматических или половых клетках, они возникают в результате числовых или структурных изменений хромосом или их сочетания. Числовые изменения сводятся к наличию добавочных хромосом или отсутствию одной из хромосом. В первом случае говорят о трисомии по какой-либо из 23 хромосом, во втором — о моносомии. Реже можно наблюдать нарушение плоидности хромосомного набора (увеличение на полный гаплоидный набор).
Структурные изменения хромосом у человека хотя и встречаются намного реже, чем численные аберрации, представляют интерес как общетеоретический, так и клинический. Можно выделить два основных типа перестроек: внутрихромосомные и межхромосомные. В свою очередь перестройки могут быть сбалансированными, т. е. в геноме присутствуют все локусы, однако их расположение в хромосомах отличается от исходного нормального. Несбалансированные перестройки характеризуются утратой или удвоением участков хромосомы. Внутрихромосомные перестройки, связанные с перестройками внутри одного плеча хромосомы, называются парацентричес-кими. Крайние участки без центромеры называются фрагментами и они обычно утрачиваются в ходе митоза.
Деления — это утрата части хромосомы, происходящая в результате двух разрывов и одного воссоединения с утратой сегмента, лежащего между разрывами. У человека известна делеция хромосомы 5. Такая делеция выражается в синдроме «кошачьего крика». Дупликация—это удвоение сегмента хромосомы, в результате чего клетка организма становится полиплоидной по данному сегменту. Если дупликация находится непосредственно за исходным участком хромосомы, то это называется тандем-дупликацией. Кроме того, дупликации могут быть локализованы в других участках хромосомы. Большинство таких перестроек детальны, а те индивиды, которые с ними выжили, как правило, не способны оставить потомство.
В случае инверсии участок хромосомы разворачивается на 180° и разорванные концы соединяются в новом порядке. Если в инвертированный участок попадает центромера, то такую инверсию называют перицентрической. Если инверсия затрагивает только одно плечо хромосомы, то она называется парацентрической. Гены в инвертированном участке хромосомы располагаются в обратном по отношению к исходному в хромосоме порядке.
К межхромосомным перестройкам относят транслокации — обмен сегментами между хромосомами. Различают следующие типы транслокаций: 1) реципрокная транслокация, когда две хромосомы взаимно обмениваются сегментами; 2) нереципрокная транслокация, когда сегмент одной хромосомы переносится в другую; 3) транслокация типа центрического соединения, когда после разрывов в околоцентромерном районе соединяются два фрагмента с центромерами таким образом, что их центромера соединяется, образуя одну. Транслокационный синдром Дауна возникает именно таким образом. При этом больные имеют выраженную симптоматику болезни Дауна, но в их кариотипе всего 46 хромосом, причем хромосом 21 и Х — две, третья транслоцирована на хромосому группы D (возможно, хромосому 15). Исследование кариотипов их родителей показало, что чаще всего фенотипически нормальные матери имеют 45 хромосом и точно такую же транслокацию хромосомы 21, как и ребенок.
Хромосомные болезни можно классифицировать по тому, какая из систем хромосом — половая или аутосомная — вовлекается в патологический процесс. До настоящего времени точной общепринятой классификации хромосомных болезней нет. Это связано со многими причинами, в частности, с тем, что патогенетические механизмы хромосомных нарушений еще не выяснены. Большинство хромосомных аберраций по-прежнему относят к группе синдромов. Лишь некоторые из них можно назвать болезнями. Это в полной мере справедливо для болезней Дауна и Клайнфелтера.
Какова же общая клиническая характеристика хромосомных болезней? Почти все они сопровождаются множественными нарушениями скелета, психики. Отмечаются врожденные пороки наружных и внутренних половых органов, их замедленный рост. Нарушается деятельность нервной, эндокринной и других систем, снижена генеративная функция, наблюдается четкое повышение смертности среди лиц с хромосомными аномалиями.
Диагностические признаки разделяются на 3 группы. А — комплекс признаков, позволяющих лишь заподозрить хромосомную аномалию. Это общие признаки: физическое недоразвитие, ряд дизморфий мозгового и лицевого черепа (деформация ушных раковин и их низкое расположение, микроцефалия, эпикант, высокое небо), косолапость, клинодактилия мизинцев, некоторые пороки развития внутренних органов (сердца, почек, легких). В — признаки встречаются в основном при определенных хромосомных болезнях. Их сочетание позволяет в большинстве случаев диагностировать хромосомную аномалию. Среди характерных, наиболее часто встречающихся признаков этой группы при трисомии хромосомы 18 следует назвать долихоцефалию (89,6% случаев), флексорное положение кистей (96,1 %), «стопу-качалку» (76,2%), короткий и широкий I палец стопы (70,6% случаев); при трисомии по хромосоме 13—расщелину верхней губы и неба (68,7 % случаев), флексорное положение кистей (44,4%), косоглазие (31,4%), дефект скальпа (30,5 % случаев) и др. С — признаки характерны только для одной хромосомной аномалии, например, «кошачий крик»—при синдроме 5р—-, алопеция при синдроме 18р.
Хромосомным болезням свойственна чрезмерная фенотипическая (клиническая) вариабельность. Часто при одних и тех же хромосомных аномалиях клинические признаки выражены по-разному. В качестве примера можно привести болезнь Дауна, при которой поражение психики проявляется слабоумием от легких до тяжелых степеней (дебильность — имбецильность — идиотия). Выраженность клинических проявлений хромосомных болезней зависит от многих причин, среди которых следует отметить генотипические и паратипические факторы, состав поражаемых генов, размер аберрации и индивидуальность хромосомы, процент мозаичных клеток в организме и т. д. Иногда при низком содержании! мозаичных клеток клиническая картина бывает стертой." Это особенно часто наблюдается при мозаицизме по половым хромосомам. Обращает на себя внимание и то, что, как правило, клинические проявления у больных с аутосомными аберрациями намного тяжелее, чем у больных с нарушением в системе половых хромосом. Следовательно, жизнеспособность больных с аберрациями половых хромосом значительно выше. Среди новорожденных с хромосомными аберрациями около 50 % детей имеют аутосомные аномалии, а другие 50 % — аномалии по половым хромосомам, несмотря на то что система аутосом представлена 22 парами хромосом, а система половых хромосом — только одной парой.
Интеллект при аутосомных синдромах нарушается гораздо резче, чем при синдромах, вызванных аномалиями половых хромосом.
Клинические и цитогенетические исследования, проводимые у новорожденных с хромосомной патологией, показывают, что жизнеспособность их зависит от типа хромосомного нарушения. Большинство с аутосомными трисомиями погибают в первые дни жизни. У больных с аномалиями половых хромосом жизнеспособность, напротив, не снижена. Это связано с тем, что полная клиническая картина у больных данного контингента разворачивается лишь в период полового созревания, когда начинают функционировать гены, определяющие половое развитие организма и формирование вторичных половых признаков. Из других контингентов хромосомные- аномалии обнаруживаются: среди детей с олигофренией в среднем у 15 % больных (в основном структурные перестройки); у больных с нарушением половой дифференцировки частота хромосомных нарушений колеблется от 20 до 50 % (у 50 % из них обнаруживается мозаицизм); у больных с первичной и вторичной аменореей частота хромосомных аномалий колеблется от 10 до 50 % (более 90 % — численные нарушения и мозаицизм); при мужском бесплодии частота аномальных хромосом достигает 10—15% (до 70 %—численные нарушения и мозаицизм). При отягощенном акушерском анамнезе у супружеских пар с повторными спонтанными абортами, мертворождениями или рождением детей с пороками развития сбалансированные перестройки наблюдаются в 5 % случаев.
Для диагностики хромосомных болезней в настоящее время применяют ряд методов медицинской генетики, чаще клинико-генеалогический, цитогенетический (определение полового хроматина и кариотипирование), пато-логоанатомический и дерматоглифический. Некоторые хромосомные болезни можно диагностировать клинически, не прибегая к другим методам. Например, своеобразие клиники синдромов Шерешевского —Тернера и Клайнфелтлера позвлояет опытному клиницисту поставить диагноз без цитогенетического анализа.
Как правило, современная диагностика любого заболевания является комплексной. Кроме традиционных клинических данных, лабораторных исследований, сбора анемнестических данных,, при диагностике наследственных болезней, в частности хромосомных, особое внимание уделяется изучению гениалогии больного. Только около 3-5% их четко наследуется.
Основным методом диагносики хромосомных болезней является цитогенетический, который включает в себя: а) определение полового хроматина; б) определение "барабанных палочек"; в) определение добавочной хромосомы Y с помощью флюоресцентной микроскопии; г) кариоптирование (получение хромосомных наборов). Наиболее точным и достоверным методом исследований является кариологический.
Из вспомогательных методов диагностики хромосомных заболеваний наиболее прост и доступен дерматоглифический метод, применяемый для анализа кожных узоров на ладонях, подошвах и сгибательной поверхности пальцев, так как при хромосомных болезнях наблюдается специфическое изменение кожных узоров.
Основными показаниями для направления на цитогенетическое обследование больного и его родственников являются: 1) наличие лиц с выявленной паталогией полового хроматина; 2) наличие детей с множественными пороками развития; 3) олигофрения в сочетании с чертами внутриутробного дисгенеза или врожденными пороками развития; 4) повторные спонтанные аборты у женщин, мертворожденные дети в анамнезе или дети с пороками развития (обследованию подлежат и мужья); 5) наличие в анамнезе умерших детей с множественными врожденными пороками развития или установленным хромосомным синдромом; 6) наличие структурной перестройки и сбалансированного носительства транслокации или инверсии у матери или отца пробанда; 7) необходимость определения кариотипа плода у женщин с высоким риском рождения ребенка с хромосомной паталогией.