ВИДЫ САМОСТОЯТЕЛЬНОЙ РАБОТЫ УЧАЩИХСЯ ПО ФИЗИКЕ




 

В процессе обучения физике применяются различные виды самостоятельной работы учащихся, с помощью которых они самостоятельно приобретают знания, умения и навыки. Все виды самостоятельной работы, применяемые в учебном процессе, можно классифицировать по различным признакам:

по дидактической цели,

по характеру учебной деятельности учащихся,

по содержанию,

по степени самостоятельности и элементу творчества учащихся и т.д.

Все виды самостоятельной работы по дидактической цели можно подразделить на пять групп:

1) приобретение новых знаний, овладение умением самостоятельно приобретать знания;

2) закрепление и уточнение знаний;

3) выработка умения применять знания в решении учебных и практических задач;

4) формирование умений и навыков практического характера;

5) формирование умений творческого характера, умения применять знания

в усложненной ситуации.

Каждая из перечисленных групп включает в себя несколько видов самостоятельной работы, поскольку решение одной и той же дидактической задачи может осуществляться различными способами. Указанные группы тесно связаны между собой. Эта связь обусловлена тем, что одни и те же виды работ могут быть использованы для решения различных дидактических задач. Например, с помощью экспериментальных, практических работ достигается не только приобретение умений и навыков (в этом их основная задача), но также приобретение новых знаний и выработка умения применять ранее полученные знания.

Взаимосвязь между различными видами самостоятельной работы на уроках физики представлена схемой 1.

Рассмотрим содержание работ при классификации по основной дидактической цели.

1. Приобретение новых знаний и овладение умениями самостоятельно приобретать знания осуществляется на основе работы с учебником, выполнения наблюдений и опытов, работ аналитико-вычислительного характера (анализ формул, установление характера функциональной зависимости между величинами, определение единиц измерения величин на основе анализа формул, установление соотношения между единицами измерения физических величин и т. д. и т. п.).

2. Закрепление и уточнение знаний достигается с помощью специальной системы упражнений по уточнению признаков понятий, их отграничению, отделению существенных признаков от не существенных; по сравнению и сопоставлению изучаемых свойств тел и явлений и т. д.

3. Выработка умения применять знания на практике осуществляется с помощью решения задач различного вида (качественных, вычислительных, графических, экспериментальных, задач-рисунков), решения задач в общем виде, выполнения проектно-конструкторских и технических работ (объяснение устройства и принципа действия приборов по схеме электрической цепи; обнаружение и устранение неисправностей в приборе; внесение изменений в конструкцию прибора; разработка новой конструкции прибора), экспериментальных работ и т. д.

4. Формирование умений практического характера достигается с помощью разнообразных работ, таких, как изучение шкал


 

измерительных приборов (определение назначения и цены деления шкалы прибора, определение верхнего и нижнего пределов измерения прибора), непосредственное измерение величин, определение величин косвенными методами, вычерчивание и чтение схем приборов и электрических цепей, сборка приборов из готовых деталей, изготовление приборов подготовкой схеме и чертежам, градуирование шкал приборов, сборка электрических цепей и т. д.

5. Формирование умений творческого характера достигается принаписании сочинений, рефератов; при подготовке докладов, заданий по конструированию и моделированию, работ с элементами исследования; при поиске новых способов решения задач, новых вариантов опытов; при самостоятельной разработке методики постановки опыта и т. п.

Классифицируя самостоятельные работы по основному виду и способу деятельности учащихся, мы подразделяем их на следующие семь групп:

1) работа с учебником и дополнительной (учебной и научно-популярной) литературой;

2) экспериментальные и практические работы;

3) аналитико-вычислительные;

4) графические;

5) проектно-конструкторские;

6) работы по классификации и систематизации;

7) применение знаний для объяснения или предсказания явлений и свойств тел.

Проведенное исследование показало, что наибольший процент самостоятельных работ приходится на применение знаний для объяснения явлений и свойств тел (26,3% от общего количества работ по курсу) и работы аналитико-вычислительного характера (24,4%), третье место занимают экспериментально-практические работы, четвертое — самостоятельная работа с учебником, пятое — графические работы, шестое — проектно-конструкторские, седьмое — задания по классификации и систематизации.

Работы творческого характера при данной классификации в самостоятельную группу не выделены, так как они вошли в число экспериментальных, графических и аналитико-вычислительных работ.

К экспериментально-практическим работам отнесены все виды работ, связанные с выполнением наблюдений, опытов и изучением устройства приборов по моделям и натуральным образцам.

К проектно-конструкторским отнесены виды работ, связанные с конструированием, проектированием, моделированием. Сюда же включены работы по изучению устройства приборов по схемам и чертежам, по выявлению и устранению неисправностей в приборах, по внесению изменений в конструкцию приборов.

К графическим отнесены работы, связанные с анализом и построением графиков, работы со схемами, чертежами, рисунками.

К аналитико-вычислительным отнесены не только задачи с конкретными числовыми данными, но и задачи, решение которых может быть осуществлено лишь в общем виде; в эту группу включены также задания, в которые входит анализ формул или вывод формул, выражающих связь между физическими величинами. Иными словами, в группу аналитико-вычислительных работ отнесены все работы, основное содержание которых составляет анализ физических ситуаций, выполнение расчетов и операций с формулами.

Разнообразие всех видов самостоятельной работы по физике представлено в таблице 1, где они сгруппированы по основной дидактической цели.

Как видно из приведенной таблицы, в процессе обучения физике возможна организация более 30 видов самостоятельных работ. Однако на практике используют далеко не все виды. Чаще всего на уроках выполняют решение задач, наблюдения и опыты. Еще сравнительно редко организуется самостоятельная работа с учебником при изучении нового материала, работа по моделированию и конструированию, моделированию опытов. Очень редко предлагаются задания по классификации изучаемых объектов.

Применение знаний неразрывно связано с овладением умениями и навыками. Это легко показать хотя бы на примере решения физических задач, которое осуществляется с целью уточнения и углубления знаний, закрепления знаний и выработки умения применять знания на практике. Разделить эти три стороны единого процесса невозможно. Их можно выделить, абстрагировать только теоретически. Это относится также к таким видам работы, как наблюдение и эксперимент. В процессе их выполнения учащиеся также уточняют имеющиеся у них знания, приобретают новые и совершенствуют ранее полученные умения практического характера (например, измерительные умения, умения обращения с различного рода приборами). В свою очередь, при выполнении некоторых практических работ осуществляется и приобретение новых знаний (например, о новых способах измерения физических величин), и закрепление ранее полученных знаний, и применение ранее полученных знаний к поискам решения поставленных учителем познавательных задач. Выделение в самостоятельную группу работ творческого характера также в значительной мере является условным, потому что элемент творчества может быть привнесен в работы других групп. Тем не менее оно необходимо, так как позволяет объективно оценить систему самостоятельных работ с точки зрения ее соответствия решению разнообразных дидактических задач, удовлетворения требованию формирования у учеников умений и навыков познавательного и практического характера. Такое сопоставление применяемой учителем совокупности самостоятельных работ с моделью системы позволяет ему своевременно вносить коррективы в учебный процесс.

Пояснение на конкретных примерах содержание каждого из указанных видов работ.

1. Первичное знакомство с понятием может осуществляться с помощью ряда самостоятельных работ. Это может быть работа с учебником; наблюдение явления, понятие о котором формируется; эксперимент и другие виды работ, при выполнении которых учащиеся впервые встречаются с термином, обозначающим понятие.



 

Первичное знакомство с некоторыми понятиями может осуществляться на основе самостоятельной работы с учебником в сочетании с раздаточным материалом. Так, например, учащиеся получают понятие об электрической лампе накаливания и о плавких предохранителях.

2. Выявление существенных признаков понятия представляет второй этап в формировании понятий. Поэтому и самостоятельные работы этого вида предлагаются тотчас же после первичного знакомства с объектами, понятие о которых формируется. Так, например, после первичного знакомства с лампой накаливания по рисунку учебника и на основе наблюдения за «работой» лампы учитель может предложить детям выявить, что общего в устройстве и принципе действия ламп накаливания различного вида. В результате сравнения, сопоставления имеющихся на рабочем столе ламп различного вида ученики выделяют их общее, существенное, без чего лампа не может выполнять свои функции — излучать яркий свет.

Аналогично на основе наблюдения за различными видами пружинных динамометров, их сравнения и сопоставления учащиеся выявляют существенно общее для всех видов пружинных динамометров — наличие у них проградуированной пружины. Это и есть их существенный признак.

Вторым видом работ, целью которых является выявление существенных признаков понятия, служат эксперимент, опыты учащихся. Так, например, на основе фронтальных опытов учащиеся выявляют существенный признак наэлектризованных тел. Таким признаком является особый характер их взаимодействия друг с другом и с легкими предметами: все наэлектризованные тела притягивают легкие предметы.

3. Работы, основная цель которых — уточнение признаков нового понятия, отграничение его от других (ранее сформированных) понятий. Уточнению признаков понятий способствует выполнение работ следующего вида:

а) решение задач практического характера, например: определить середину стеклянной трубки, не измеряя ее длины. В процессе решения этой задачи уточняются признаки понятия «центр тяжести тела»;

б) решение задач-вопросов, например: почему вода в открытом стакане, стоящем в комнате, всегда бывает холоднее комнатного воздуха? Решение подобных задач требует от учащихся не формального перечисления признаков понятия, а их применения для объяснения явления. При этом и происходит уточнение признаков понятия. В процессе ответа на сформулированный выше вопрос ученик должен раскрыть сущность испарения (вырывание с поверхности жидкости молекул, энергия которых достаточна для совершения работы по преодолению сил взаимодействия с молекулами поверхностного слоя жидкости). А отсюда последует и само объяснение явления (охлаждение жидкости при испарении).

Если признаки понятия не усвоены или усвоены неверно, объяснение вопроса или решение задачи вызовет затруднения и ученик должен будет снова просмотреть соответствующие параграфы учебника (или записи в тетради) и после этого повторно вернуться к поискам ответа на поставленный вопрос или к решению задачи;

в) решение тренировочных задач с целью уточнения единиц измерения величин относится к особой группе самостоятельных работ, имеющих важное значение на начальном этапе формирования понятий о единицах измерения величин (до оперирования ими в решении сложных физических задач). Примерами таких задач являются следующие: 1) Амперметр, включенный последовательно с лампой, показывает 0,5 А. Сколько кулонов электричества проходит через спираль в течение 1 с? 2) Напряжение на участке цепи 220 В. Какая работа совершается на этом участке при прохождении по нему заряда 1 Кл?

Поиск ответа на поставленные вопросы побуждает ученика вспомнить определения единиц измерения «ампер» и «вольт», их связь с единицами измерения других величин. Ответ на поставленные вопросы может быть дан, если эти определения усвоены и находятся в «хранилище» логической памяти. Опираясь лишь на механическую память, ученик может вспомнить формальное определение понятия, но к решению задачи оно его не приведет, так как логические связи этого понятия с другими им не усвоены.

Варьирование несущественными признаками понятий обеспечивает правильное и прочное усвоение учащимися существенных признаков понятий, учит их легко находить данное понятие в любой ситуации по его существенным признакам. Варьирование несущественными признаками особенно эффективно осуществляется с помощью решения графических задач. Примером может служить задача с изображением силы давления, действующей в различных направлениях, как показано на рисунке 3. Здесь несущественным признаком является, ориентация в пространстве поверхности, на которую производится давление, существенный признак — перпендикулярность направления действия силы к этой поверхности.

Многочисленны задачи по геометрической оптике, с помощью которых достигается усвоение основного признака углов падения и отражения. В этих задачах варьируются положение в пространстве отражающей плоскости и направление падающего луча (рис. 4). Вначале учащимся предлагают построить угол падения, а затем, когда это понятие будет безошибочно усвоено, по углу падения определить направление отраженного луча.

Для дифференцировки понятий используются следующие виды самостоятельных работ:

а) сравнение и сопоставление, их можно осуществлять с помощью таблиц: в одном столбце записывать признаки одного понятия, в другом — признаки другого. Так, например, осуществляется дифференцировка понятий «кипение» и «испарение», «давление» и «сила давления», которые очень часто путают учащиеся;

б) применение метода выборочных ответов, при котором ученик

из предлагаемого перечня признаков понятий должен выделить правильные знаки указанного понятия.

Примером подобной работы:

Внимательно прочитайте вопросы и варианты ответов к ним. Выберите варианты ответов, которые считаете верными. Результаты работы запишите на карточке шифром, указав в ней номер вопроса римской цифрой, а соответствующий ему вариант ответа — арабской, например: I — 2; II — 4; III — 1; IV — 3 и т. д.

Вопросы

I. Какие из перечисленных тел обладают только потенциальной энергией?

II. Какие из перечисленных тел обладают только кинетической энергией?

III. Какие из перечисленных тел обладают одновременно и потенциальной, и кинетической энергией?

IV. В каком из приведенных случаев происходит превращение потенциальной энергии в кинетическую?

Варианты ответов

1. Деформированная пружина.

2. Летящий самолет.

3. Лежащий на краю пропасти камень.

4. Движущийся по горизонтальному участку шоссе автомобиль.

5. Падающий поток воды.

6. Лежащий на футбольном поле мяч.

С помощью такой работы происходит от дифференцировка понятия «кинетическая энергия» от понятия «потенциальная энергия»;

в) решение вычислительных задач. Так, например, понятия «давление» и «сила давления» сравнительно легко отграничиваются учащимися в результате решения специально подобранной группы задач на определение давления по силе давления и площади опоры и обратных задач — на определение силы давления по давлению и площади опоры.

Иногда для уточнения понятий целесообразно использовать прием, получивший название «применение контробраза». Этот прием помогает учащимся более отчетливо осознать допускаемые ими ошибки в определениях понятий. Так, очень часто в определениях, которые дают учащиеся, отсутствуют некоторые из видовых отличий, хотя они и фиксируются сознанием учащегося. Например, на вопрос учителя: «Что представляет собой траектория прямолинейного движения?» — ученик отвечает: «Траектория прямолинейного движения — линия, по которой движется тело». Он не сказал, что это прямая линия. Однако, когда учитель предложил ему изобразить на доске траекторию этого вида движения, выяснилось, что у него имелось правильное представление: траекторию прямолинейного движения он представил как прямую линию. Но этот существенный признак не был отражен в определении.

4. Работы, основной целью выполнения которых является конкретизация понятий, расширение их объема (сбор коллекционного материала, выполнение заданий типа «пронаблюдать и привести примеры», работа с раздаточным материалом).

Конкретизация понятий в VI—VIII классах в основном достигается с помощью самостоятельных работ четырех видов:

а) наблюдение за предметами и явлениями, понятие о которых
формируется, в окружающей жизни;

б) чтение научно-популярной литературы с целью расширения
круга знаний о проявлениях и применениях изучаемых свойств тел
и явлений в технике, на производстве, в повседневной жизни;

в) работа со справочными таблицами с целью конкретизации
значения величин в природе и технике, например значения длин,
временных интервалов, массы, скорости и т. д.

Наряду с обычными справочными таблицами в данном случае особенно полезны таблицы, в которых значения величин откладываются по числовой оси.

г) работа с раздаточным материалом и коллекциями позволят конкретизировать представление о разнообразных проявлениях изучаемого понятия. Например, при формировании понятия «металлы» работа с коллекцией металлов позволяет учащимся убедиться в разнообразии и вместе с тем в единстве их свойств

Работая с коллекцией теплоизоляционных материалов, учащиеся получают представление о разнообразии естественных и искусственных теплоизоляторов, обращают внимание на то, что все они, несмотря на внешнее различие (цвет, форма), имеют пористое строение. Если работа еще сопровождается постановкой опытов, то они убеждаются, что, чем пористее материал, тем выше его теплоизоляционные свойства.

5. Работы, основная задача которых заключается в выработке у учащихся умения правильно соотносить данное понятие с другими понятиями. К этой группе относятся прежде всего задания по классификации и систематизации понятий.

Выполнение заданий по классификации и отражение результатов ее в наглядной форме, как показали исследования, намного повышают прочность знаний учащихся, способствуют их систематизации и обобщению.

6. Работы, основная цель которых — формирование у учащихся умения применять понятия в решении задач творческого характера. Выполняя такие работы, ученики учатся оперировать данным понятием в комплексе с другими понятиями. В этой группе особенно ценны те работы, при выполнении которых устанавливаются не только внутрисистемные, но и межсистемные связи. Примером заданий такого вида являются задания по изучению связи биологических и физических явлений, например задание по изучению влияния длины светового дня на рост и развитие растений, задание по изучению влияния предпосевной обработки семян в электрическом поле на всхожесть семян и урожай растений.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-12-28 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: