Формальная логическая система с аксиоматикой свойств операций.




Построим формальную логическую систему на основе имеющейся алгебраической системы.

Предметные константы:

Константы 1 и 0 – соответствуют картежам, описанным выше.

Множество переменных:

{A1, A2,…,А81 } – множество картежей, обозначенных латинскими буквами. Вид картежа описан ранее.

Предикатные символы:

Предикат W’ (A, B) соответствует отношению меньше по количеству выпуклостей алгебраической системы; выполняется, если А <’ В.

Предикат W” (A, B) соответствует отношению меньше по количеству вогнутостей алгебраической системы; выполняется, если А <” В.

Предикат S’ (A, B) соответствует отношению больше по количеству выпуклостей алгебраической системы; выполняется, если А >’ В.

Предикат S” (A, B) соответствует отношению больше по количеству вогнутостей алгебраической системы; выполняется, если А >” В.

Предикат R’ (A, B) соответствует отношению равенства по количеству выпуклостей алгебраической системы; выполняется, если А =’ В.

Предикат R” (A, B) соответствует отношению равенства по количеству вогнутостей алгебраической системы; выполняется, если А =” В.

Предикат R (A, B) соответствует отношению равенства алгебраической системы; выполняется, если А = В.

Функциональные символы:

f+ соответствует операции наложения.

f2+ (A, B) ó A + B.

F* соответствует операции склеивания.

f2* (Ai, Bj) ó Ai * Bj, i,j= , |i – j| = 2.

f-1 соответствует операции инверсия.

f-1 (A) ó (A)-1.

 

Синтаксис термов:

Терм - всякая предметная константа, предметная переменная либо функциональная форма.

Предикатная форма – предикатная константа, соединяющаяся с подходящим числом терм:

P(t1,.., tm);

P().

Если fn – функциональный символ, t1, t2, …, tn – термы, то fn (t1, t2, …, tn) также терм.

Понятие формулы в логике определим следующим образом:

всякая предикатная форма есть формула;

если А – формула, то А-1 тоже формула;

если А и В - формулы, то А + В, А * В также формулы;

если А - формула и хА - переменная, то "xА и $xA - формулы;

других формул нет.

Для данной формальной логической системы справедливы следующие аксиомы:

E (f+(A, 0), A),

E (f+(A, A), A),

"(i | i= ) E (f*(Ai, f-1(Ai)),1i),

E (f+(A, B), f+(B, A)),

"(A | f-1(Ai) = 1i, i= ) E (f*(Ai, 1i),Ai)

Формула общезначима (является тавтологией), если она истинна в любой интерпретации.

Формула невыполнима (противоречива, тождественно ложна), если она при всех интерпретациях является ложной.

Множество теорем определим как множество общезначимых формул.

Приведем примеры логического вывода:

1)Пусть А, В, С- любые формулы, тогда выводами являются следующие последовательности:

а)A É (B É A);

б)A É (B É A), A É (B É A);

в)A É (A É A), (A É (B É C)) É ((A É B) É (A É C))

г)(ØA ÉØB) É (B É A), B É (A É B),ØA É (ØB É ØA);

д)(A É (A É A)) É ((A É A) É (A É A)), (A É (A É A)),(A É A) É (A É A):

.

2)Выведем: ╞ A(u) É $uA(u), где A(u) – любая предикатная формула.

Формула"uØA(u) É ØA(u), согласно аксиоме "xF(x) É F(y), выводима. Формула (p É Øq) É (q É Øp) – тавтология и следовательно выводима. Из этого следует, что предикатная формула (A É ØB) É (B É ØA), где А, В- любые формулы, выводима в исчислении предикатов. Тогда выводима и формула . Отсюда по правилу заключения ╞A(u)ÉØ"uØA(u), то есть ╞A(u) É $uA(u).

Также можно использовать и следующие правила вывода:

╞ A É B, ╞ B É C, то ╞ A É C

A╞ B, C ╞ D, B, D ╞ E, то A, B ╞ E

╞ A É (B É C), то╞ B É (A É C)

╞ AÉ (B É C), то A + B É C

╞ A + B É C, то╞ A É (B É C)

╞ - символ «выводимости »

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-08-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: