Расчёт параметров усилителя мощности




Задание на курсовое проектирование по курсу

«Основы электроники и схемотехники»

 

 

Студент: Данченков А.В. группа ИИ-1-95.

Тема: «Проектирование усилительных устройств на базе интегральных операционных усилителей»

Вариант №2.

 

Расчитать усилитель мощности на базе интегральных операционных усилителей с двухтактным оконечным каскадом на дискретных элементах в режиме АВ.

Исходные данные:

Eг, мВ Rг, кОм Pн, Вт Rн, Ом
1.5 1.0 5 4.0

Оценить, какие параметры усилителя влияют на завал АЧХ в области верхних и нижних частот.

Содержание

Структура усилителя мощности.................................................................... 3

Предварительная схема УМ (рис.6).............................................................. 5

 

Расчёт параметров усилителя мощности...................................................... 6

 

1. Расчёт амплитудных значений тока и напряжения.............................. 6

2. Предварительный расчёт оконечного каскада...................................... 6

3. Окончательный расчёт оконечного каскада......................................... 9

4. Задание режима АВ. Расчёт делителя.................................................. 10

5. Расчёт параметров УМ с замкнутой цепью ООС................................ 11

6. Оценка параметров усилителя на завал АЧХ в области ВЧ и НЧ...... 12

 

Заключение.................................................................................................... 13

 

Принципиальная схема усилителя мощности.............................................. 14

 

Спецификация элементов.............................................................................. 15

 

Библиографический список.......................................................................... 16

 

Введение

 

В настоящее время в технике повсеместно используются разнообразные усилительные устройства. Куда мы не посмотрим - усилители повсюду окружают нас. В каждом радиоприёмнике, в каждом телевизоре, в компьютере и станке с числовым программным управлением есть усилительные каскады. Эти устройства, воистину, являются грандиознейшим изобретением человечества.

В зависимости от типа усиливаемого параметра усилительные устройства делятся на усилители тока, напряжения и мощности.

В данном курсовом проекте решается задача проектирования усилителя мощности (УМ) на основе операционных усилителей (ОУ). В задачу входит анализ исходных данных на предмет оптимального выбора структурной схемы и типа электронных компонентов, входящих в состав устройства, расчёт цепей усилителя и параметров его компонентов, и анализ частотных характеристик полученного устройства.

Для разработки данного усилителя мощности следует произвести предварительный расчёт и оценить колличество и тип основных элементов - интегральных операционных усилителей. После этого следует выбрать принципиальную схему предварительного усилительного каскада на ОУ и оконечного каскада (бустера). Затем необходимо расчитать корректирующие элементы, задающие режим усилителя (в нашем случае АВ) и оценить влияние параметров элементов схемы на АЧХ в области верхних и нижних частот.

Оптимизация выбора составных компонентов состоит в том, что при проектировании усилителя следует использовать такие элементы, чтобы их параметры обеспечивали максимальную эффективность устройства по заданным характеристикам, а также его экономичность с точки зрения расхода энергии питания и себестоимости входящих в него компонентов.

 

Структура усилителя мощности

Усилитель мощности предназначен для передачи больших мощностей сигнала без искажений в низкоомную нагрузку. Обычно они являются выходными каскадами многокаскадных усилителей. Основной задачей усилителя мощности является выделение на нагрузке возможно большей мощности. Усиление напряжения в нём является второстепенным фактом. Для того чтобы усилитель отдавал в нагрузку максимальную мощность, необходимо выполнить условие Rвых= Rн.

Основными показателями усилителя мощности являются: отдаваемая в нагрузку полезная мощность Pн, коэффициент полезного действия h, коэффициент нелинейных искажений K г и полоса пропускания АЧХ.

Оценив требуемые по заданию параметры усилителя мощности, выбираем структурную схему, представленную на рис.1, основой которой является предварительный усилительный каскад на двух интегральных операционных усилителях К140УД6 и оконечный каскад (бустер) на комплементарных парах биполярных транзисторов. Поскольку нам требуется усиление по мощности, а усиление по напряжению для нас не важно, включим транзисторы оконечного каскада по схеме “общий коллектор” (ОК). При такой схеме включения оконечный каскад позволяет осуществить согласование низкоомной нагрузки с интегральным операционным усилителем, требующим на своём входе высокоомную нагрузку (т.к. каскад “общий коллектор” характеризуется большим входным Rвх и малым выходным Rвых сопротивлениями), к тому же каскад ОК имеет малые частотные искажения и малые коэффициенты нелинейных искажений. Коэффициент усиления по напряжению каскада “общий коллектор” Ku £ 1.

Для повышения стабильности работы усилителя мощности предварительный и оконечный каскады охвачены общей последовательной отрицательной обратной связью (ООС) по напряжению. В качестве разделительного элемента на входе УМ применён конденсатор C р. В качестве источника питания применён двухполярный источник с напряжением Eк = ± 15 В.

Режим работы оконечного каскада определяется режимом покоя (классом усиления) входящих в него комплементарных пар биполярных транзисторов. Существует пять классов усиления: А, В, АВ, С и D, но мы рассмотрим только три основных: А, В и АВ.

Режим класса А характеризуется низким уровнем нелинейных искажений (Kг £ 1%) низким КПД (h <0,4). На выходной вольт-амперной характеристике (ВАХ) транзистора (см. рис. 2.1) в режиме класса А рабочая точка (I K0 и U KЭ0) располагается на середине нагрузочной прямой так, чтобы амплитудные значения сигналов не выходили за те пределы нагрузочной прямой, где изменения тока коллектора прямо пропорциональны изменениям тока базы. При работе в режиме класса А транзистор всё время находится в открытом состоянии и потребление мощности происходит в любой момент. Режим усиления класса А применяется в тех случаях, когда необходимы минимальные искажения а P н и h не имеют решающего значения.

Режим класса В характеризуется большим уровнем нелинейных искажений (Kг £ 10%) и относительно высоким КПД (h <0,7). Для этого класса характерен I Б0 = 0 (рис 2.2), то есть в режиме покоя транзистор закрыт и не потребляет мощности от источника питания. Режим В применяется в мощных выходных каскадах, когда неважен высокий уровень искажений.

Режим класса АВ занимает промежуточное положение между режимами классов А и В. Он применяется в двухтактных устройствах. В режиме покоя транзистор лишь немного приоткрыт, в нём протекает небольшой ток I Б0 (рис. 2.3), выводящий основную часть рабочей полуволны U вх на участок ВАХ с относительно малой нелинейностью. Так как I Б0 мал, то h здесь выше, чем в классе А, но ниже, чем в классе В, так как всё же I Б0 > 0. Нелинейные искажения усилителя, работающего в режиме класса АВ, относительно невелики (Kг £ 3%).

В данном курсовом проекте режим класса АВ задаётся делителем на резисторах R3 - R4 и кремниевых диодах VD1-VD2 .

 

 

               
               
                   

рис 2.1 рис 2.2 рис 2.3

Расчёт параметров усилителя мощности

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: