Второй закон Ньютона в релятивистской механике




Характеристики вращения тела

Кинематические характеристики

Вращение характеризуется углом , измеряющимся в градусах или радианах, угловой скоростью (измеряется в рад/с) и угловым ускорением (единица измерения — рад/с²).

При равномерном вращении (T - период вращения),

· Частота вращения — число оборотов в единицу времени.

,

· Период вращения — время одного полного оборота. Период вращения и его частота связаны соотношением .

· Линейная скорость точки, находящейся на расстоянии R от оси вращения

,

· Угловая скорость вращения тела

.

Динамические характеристики[править | править исходный текст]

Свойства твердого тела при его вращении описываются моментом инерции твёрдого тела. Эта характеристика входит в дифференциальные уравнения, полученные из уравнений Гамильтона илиЛагранжа. Кинетическую энергию вращения можно записать в виде:

.

В этой формуле момент инерции играет роль массы, а угловая скорость - роль скорости. Момент инерции выражает геометрическое распределение массы в теле и может быть найден из формулы .

· Момент инерции механической системы относительно неподвижной оси a («осевой момент инерции») — физическая величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:

,

где: mi — масса i -й точки, ri — расстояние от i -й точки до оси.

Осевой момент инерции тела является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении.

 

21.

Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) — один из фундаментальных законов сохранения. Математически выражается через векторную сумму всехмоментов импульса относительно выбранной оси для замкнутой системы тел и остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этим момент импульсазамкнутой системы в любой системе координат не изменяется со временем.

Закон сохранения момента импульса есть проявление изотропности пространства относительно поворота.

В упрощённом виде: , если система находится в равновесии.

 

22.

При́нцип относи́тельности (принцип относительности Эйнштейна) — фундаментальный физическийпринцип, один из принципов симметрии, согласно которому все физические процессы в инерциальных системах отсчёта протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения.

Постулаты СТО

В первую очередь в СТО, как и в классической механике, предполагается, что пространство и время однородны, а пространство также изотропно. Если быть более точным (современный подход) инерциальные системы отсчета собственно и определяются как такие системы отсчета, в которых пространство однородно и изотропно, а время однородно. По сути существование таких систем отсчета постулируется.

Постулат 1 (принцип относительности Эйнштейна). Любое физическое явление протекает одинаково во всех инерциальных системах отсчёта. Это означает, что форма зависимости физических законов от пространственно-временных координат должна быть одинаковой во всех ИСО, то есть законы инвариантны относительно переходов между ИСО. Принцип относительности устанавливает равноправие всех ИСО.

Учитывая второй закон Ньютона (или уравнения Эйлера-Лагранжа в лагранжевой механике), можно утверждать, что если скорость некоторого тела в данной ИСО постоянна (ускорение равно нулю), то она должна быть постоянна и во всех остальных ИСО. Иногда это и принимают за определение ИСО.

Формально, принцип относительности Эйнштейна распространил классический принцип относительности (Галилея) с механических на все физические явления. Однако, если учесть, что во времена Галилея физика заключалась собственно в механике, то и классический принцип тоже можно считать распространяющимся на все физические явления. В том числе он должен распространяться и на электромагнитные явления, описываемые уравнениями Максвелла. Однако, согласно последним (и это можно считать эмпирически установленным, так как уравнения выведены из эмпирически выявленных закономерностей), скорость распространения света является определённой величиной, не зависящей от скорости источника (по крайней мере в одной системе отсчёта). Принцип относительности в таком случае говорит, что она не должна зависеть от скорости источника во всех ИСО в силу их равноправности. А значит, она должна быть постоянной во всех ИСО. В этом заключается суть второго постулата:

Постулат 2 (принцип постоянства скорости света). Скорость света в «покоящейся» системе отсчёта не зависит от скорости источника.

Принцип постоянства скорости света противоречит классической механике, а конкретно - закону сложения скоростей. При выводе последнего используется только принцип относительности Галилея и неявное допущение одинаковости времени во всех ИСО. Таким образом, из справедливости второго постулата следует, что время должно быть относительным - неодинаковым в разных ИСО. Необходимым образом отсюда следует и то, что "расстояния" также должны быть относительны. В самом деле, если свет проходит расстояние между двумя точками за некоторое время, а в другой системе - за другое время и притом с той же скоростью, то отсюда непосредственно следует, что и расстояние в этой системе должно отличаться.

Необходимо отметить, что световые сигналы, вообще говоря, не требуются при обосновании СТО. Хотя неинвариантность уравнений Максвелла относительно преобразований Галилея привела к построению СТО, последняя имеет более общий характер и применима ко всем видам взаимодействий и физических процессов. Фундаментальная константа , возникающая в преобразованиях Лоренца, имеет смысл предельной скорости движения материальных тел. Численно она совпадает со скоростью света, однако этот факт, согласно современной квантовой теории поля (уравнения которой изначально строятся как релятивистски инвариантные) связан с безмассовостью электромагнитных полей. Даже если бы фотон имел отличную от нуля массу, преобразования Лоренца от этого бы не изменились. Поэтому имеет смысл различать фундаментальную скорость и скорость света [8]. Первая константа отражает общие свойства пространства и времени, тогда как вторая связана со свойствами конкретного взаимодействия.

В связи с этим второй постулат следует формулировать как существование предельной (максимальной) скорости движения. По своей сути она должна быть одинаковой во всех ИСО, хотя бы потому, что в противном случае различные ИСО не будут равноправны, что противоречит принципу относительности. Более того, исходя из принципа "минимальности" аксиом, можно сформулировать второй постулат просто как существование некоторой скорости, одинаковой во всех ИСО, а после вывода соответствующих преобразований - показать, что это предельная скорость (потому, что подстановка в эти формулы скоростей больше этой скорости приводит к мнимости координат).

 

23.

Под релятиви́стским замедле́нием вре́мени обычно подразумевают кинематический эффект специальной теории относительности, заключающийся в том, что в движущемся теле все физические процессы проходят медленнее, чем следовало бы для неподвижного тела по отсчётам времени неподвижной (лабораторной) системы отсчёта.

Релятивистское замедление времени проявляется[1], например, при наблюдении короткоживущих элементарных частиц, образующихся в верхних слоях атмосферы под действием космических лучей и успевающих благодаря ему достичь поверхности Земли.

Данный эффект, наряду с гравитационным замедлением времени учитывается в спутниковых системах навигации, например, в GPS ход времени часов спутников скорректирован на разницу с поверхностью Земли[2], составляющую суммарно 38 микросекунд в день[3].

В качестве иллюстрации релятивистского замедления времени часто приводится парадокс близнецов.

 

24.

Лоренцево сокращение, Фицджеральдово сокращение, также называемое релятивистским сокращение длины движущегося тела или масштаба — предсказываемый релятивистскойкинематикой эффект, заключающийся в том, что с точки зрения наблюдателя движущиеся относительно него предметы имеют меньшую длину (линейные размеры в направлении движения), чем их собственная длина. Множитель, выражающий кажущееся сжатие размеров, тем сильнее отличается от 1, чем больше скорость движения предмета.

Эффект значим, только если скорость предмета по отношению к наблюдателю сравнима со скоростью света.

Сокращение длин возникает из-за свойств псевдоевклидовой геометрии пространства Минковского, аналогичных удлинению сечения, например, цилиндра, когда оно проводится не строго поперёк оси, а косо. Говоря иначе, «один и тот же момент времени» с точки зрения системы отсчёта, где стержень движется, не будет являться одним и тем же моментом с точки зрения системы отсчёта, связанной со стержнем. То есть процедура измерения расстояния в одной системе отсчёта с точки зрения любой другой системы отсчёта является не процедурой измерения чистого расстояния, когда положения, например, концов стержня засекаются в один и тот же момент времени, а смесью измерения пространственного расстояния и промежутка времени, которые вместе составляют инвариантный, то есть не зависящий от системы отсчёта, пространственно-временной интервал.

 

 

25. 26.

 

Преобразованиями Лоренца в физике, в частности, в специальной теории относительности (СТО), называются преобразования, которым подвергаются пространственно-временные координаты каждого события при переходе от одной инерциальной системы отсчета (ИСО) к другой. Аналогично, преобразованиям Лоренца при таком переходе подвергаются координаты любого 4-вектора.

Чтобы явно различить преобразования Лоренца со сдвигами начала отсчёта и без сдвигов, когда это необходимо, говорят о неоднородных и однородных преобразованиях Лоренца.

Преобразования Лоренца без сдвигов начала отсчёта образуют группу Лоренца, со сдвигами — группу Пуанкаре, иначе называемую неоднородной группой Лоренца.

С математической точки зрения преобразования Лоренца — это преобразования, сохраняющие неизменной метрику Минковского, то есть, в частности, последняя сохраняет при них простейший вид при переходе от одной инерциальной системы отсчёта к другой (другими словами преобразования Лоренца — это аналог для метрики Минковского ортогональных преобразований, осуществляющих переход от одного ортонормированного базиса к другому, то есть аналог поворота координатных осей для пространства-времени). В математике или теоретической физике преобразования Лоренца могут относиться к любой размерности пространства.

Именно преобразования Лоренца, смешивающие — в отличие от преобразований Галилея — пространственные координаты и время, исторически стали основой для формирования концепции единого пространства-времени.

· Следует заметить, что лоренц-ковариантны не только фундаментальные уравнения (такие, как уравнения Максвелла, описывающее электромагнитное поле, уравнение Дирака, описывающее электрон и другие фермионы), но и такие макроскопические уравнения, как волновое уравнение, описывающее (приближенно) звук, колебания струн и мембран, и некоторые другие (только тогда уже в формулах преобразований Лоренца под следует иметь в виду не скорость света, а какую-то другую константу, например скорость звука). Поэтому преобразования Лоренца могут быть плодотворно использованы и в связи с такими уравнениями (хотя и в довольно формальном смысле, впрочем, мало отличающемся — в своих рамках — от их применения в фундаментальной физике).

 

27.

Импульс — это аддитивный интеграл движения механической системы, связанный согласно теореме Нётер с фундаментальной симметрией —однородностью пространства.


 

28.

Второй закон Ньютона в релятивистской механике

Сила определяется как , также известно выражение для релятивистского импульса:

Взяв для определения силы производную по времени от последнего выражения, получим:

где введены обозначения: и .

В результате выражение для силы приобретает вид:

Отсюда видно, что в релятивистской механике в отличие от нерелятивистского случая ускорение не обязательно направлено по силе, в общем случае ускорение имеет также и составляющую, направленную по скорости.

 

29.

Полная энергия релятивистской частицы . Полная энергия включает в себя все виды энергии: механическую, тепловую, химическую, ядерную и т.д.
Энергия частицы при v=0, т.е. называется энергией покоя. Это -- максимальная энергия, заключенная в покоящейся в данной системе отсчета частице (теле); она включает в себя энергию внутриатомных и внутриядерных взаимодействий.

 

30.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: