Круговорот кислорода в биосфере




 

Хорошо известно, что основные запасы молекулярного кислорода сосредоточены в атмосфере. Его процентное содержание в атмосферном воздухе близко к 21%, что, в пересчете на массу, составляет 1 184 000 Гт. Атмосферный кислород потребляется при дыхании наземных автотрофов (в основном представленных растениями) и гетеротрофов (животные, грибы, бактерии), а также растворяется в морской воде. Возвращение молекулярного кислорода в атмосферу происходит при фотосинтезе наземных растений и при выделении из морской воды.

Рассмотрим подробнее схему круговорота кислорода в биосфере (Рис. 3). При составлении этой схемы мы опирались на работу R.F. Keeling et al. (1993), с коррекцией величин ряда потоков согласно последним оценкам МГЭИК (Prentice et al., 2001), новейшим результатам исследований газообмена океана (Najjar, Keeling, 2000, Keeling, Garcia, 2002) и нашим оценкам антропогенного потребления кислорода.

Растения суши при создании органических веществ из углекислого газа и воды в процессе фотосинтеза ежегодно выделяют в атмосферу 336 Гт O2. Создаваемое при этом органическое вещество (или его энергетический эквивалент) называют валовой первичной продукцией (GPP). Ровно половина от GPP используется на дыхание самими растениями (дыхание автотрофов), при этом из атмосферы расходуется 168 Гт O2. Оставшаяся часть органического вещества называется чистой первичной продукцией (NPP), равной 168 Гт КЭ[1]. Вещество чистой первичной продукции пополняет пулы биомассы, детрита (то есть мертвых остатков живых организмов) и органического вещества почвы. Окисление органического вещества этих пулов производится гетеротрофными организмами (животные, грибы, бактерии), в результате ежегодно потребляется 154 Гт O2. Кроме того, часть вещества окисляется в результате горения (лесные, степные и тундровые пожары, контролируемые палы на сельскохозяйственных землях, использование биомассы в качестве топлива и т. д.). Этот поток приводит к потреблению 11 Гт O2. Суммировав все потоки потребления и образования молекулярного кислорода, получим, что биота суши ежегодно выделяет около 3 Гт O2 (тем самым частично компенсируя его потери, связанные со сжиганием ископаемого топлива).

 

Потоки органических веществ


Рис. 3. Круговорот кислорода в биосфере (по Keeling et al, 1993, с изменениями) Пулы кислорода представлены в Гт O2, потоки – в Гт O2 год-1. Потоки органического вещества выражены в количествах кислорода, необходимых для их полного окисления. GPP – валовая первичная продукция, NPP – чистая первичная продукция.

Мировой океан, как и атмосфера, является хранилищем молекулярного кислорода. Суммарное количество кислорода, растворенного в морской воде, равно 7200 Гт O2, или около 0.6% от его содержания в атмосфере. Процессы обмена кислорода между океаном и атмосферой регулируются температурными условиями, вертикальным и горизонтальным транспортом водных масс, а также градиентами концентраций, создающимися в результате деятельности поверхностной морской биоты. Наибольший вклад в регуляцию кислородного обмена вносят сезонные изменения температуры. При весеннем прогревании воды кислород покидает поверхностные воды и переходит в атмосферу, в осенний период возвращается обратно. На кислородном обмене между атмосферой и поверхностью океана сказываются и суточные колебания температуры. В результате суммарный годичный обмен кислородом между океаном и атмосферой достигает 4480 Гт O2, причем потоки растворения и выделения практически равны друг другу. Однако современное потепление климата приводит к повышению температуры поверхностных вод океана и тем самым некоторому уменьшению растворимости кислорода. По существующим оценкам (Najjar, Keeling, 2000, Keeling, Garcia, 2002), в период 1990-2000 гг. мировой океан ежегодно выделял в атмосферу около 1 Гт O2. Этот кислород попадает в атмосферу за счет уменьшения его запаса в морских водах. Тренды к уменьшению концентрации растворенного кислорода зарегистрированы в различных районах мирового океана (Andreev, Kusakabe, 2001, Andreev, Watanabe, 2002, Kim et al., 2001 и др.).

В поверхностных водах до глубин распространения солнечного света (так называемая фотическая зона) планктонные организмы осуществляют фотосинтез, при котором выделяется 288 Гт O2. Суммарное дыхание автотрофов и гетеротрофов фотической зоны приводит к поглощению 258 Гт O2. Часть органического вещества, образуемого в фотической зоне, осаждается в глубинные воды (детритный дождь) и там разлагается гетеротрофными организмами. На их дыхание ежегодно расходуется 30 Гт кислорода, который транспортируется из поверхностных слоев воды. Таким образом, годичные потоки кислорода внутри океане являются хорошо сбалансированными.

Следует обратить внимание на принципиальное различие роли океана и суши в регулировании атмосферных концентраций углекислого газа и кислорода. На суше круговороты кислорода и углекислого газа тесно связаны, при поглощении углекислого газа выделяется кислород и наоборот при мольном соотношении 1.05. Совершенно иная ситуация имеет место в океане, который является наиболее мощным поглотителем углекислого газа атмосферы, изымющим из нее около 7.3 Гт CO2 ежегодно (Prentice et al., 2001). Однако этот процесс связан с физико-химическими процессами растворения углекислого газа в морской воде и не приводит к возвращению в атмосферу молекулярного кислорода.

Проведенный выше анализ круговорота кислорода на суше приводит к выводу, что наземная биота является ежегодно выделяет в атмосферу 3 Гт кислорода (с учетом сжигания биомассы), а океан – 1 Гт. Антропогенное потребление кислорода в результате сжигания ископаемого топлива составляет 21-23 Гт O2, значит, ежегодные потери млекулярного кислорода атмосферой должны быть на уровне 17-19 Гт. На рис. 4А представлена динамика содержания кислорода в атмосфере, выраженная как снижение его массовых количеств по сравнению с уровнем 1990 г. (исходная информация по снижению содержания кислорода в ppm приведена в работах Keeling et al., 1996, Prentice et al., 2001). Годичные потери кислорода атмосферой, согласно приведенным на рис. XXА величинам, находятся в пределах 14-20 Гт O2, то есть очень близки к нашим балансовым оценкам.

 

Рис. 4. Динамика запаса молекулярного кислорода атмосферы за 1999-2000 гг. А - по отношению к уровню 1990 г., Б – в абсолютном выражении.

 

Наземная биота компенсирует в настоящее время лишь около 13% от антропогенного потребления кислорода, связанного со сжиганием ископаемого топлива. В результате имеет место постоянное снижение запасов молекулярного атмосферного кислорода. Однако в относительном выражении это снижение крайне незначительно из-за очень больших запасов молекулярного кислорода атмосферы (1 184 000 Гт O2). Годовое антропогенное потребление кислорода составляет лишь 0.0019% от его запаса в атмосфере, а снижение запаса кислорода – лишь 0.0016% (Рис. 4Б). При нынешних темпах потребления кислорода человечеству нужно более 600 лет, чтобы уменьшить содержание кислорода на 1%.

Реальный предел потенциальным возможностям человечества по использованию кислородного ресурса атмосферы определен планетарными запасами ископаемого топлива. Потенциальные запасы в кислородном эквиваленте оцениваются в 16 500 (Rogner, 1998), 17 500 (World Energy Council, 1993) и 24 320 Гт КЭ (Keeling et al., 1993). Если использовать наибольшую из цитированных оценок, легко подсчитать, что даже при полном использовании запасов ископаемого топлива из атмосферы может быть потреблено не более 2% кислорода. Добавим, что разведанные в настоящее время запасы ископаемого топлива составляют около 25% от потенциальных. Следовательно, возможности воздействия человека на содержание кислорода атмосферы оказываются невелики и не сравнимы по относительному уровню с воздействиями на концентрации малых газовых примесей атмосферы (углекислый газ, метан, оксиды азота и т. д.). Напомним, что за истекшее столетие содержание углекислого газа в атмосфере увеличилось на 32% (Prentice et al., 2001), что, в свою очередь, выразилось в значительном изменении климатической ситуации на планете.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-12-28 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: