Основное и главное требование - сделать недоступным касание частей аппаратуры, находящихся под напряжением.




Для этого прежде всего изолируют части приборов и аппаратов, находящиеся под напряжением, друг от друга и от корпуса аппаратуры. Изоляция, выполняющая такую роль, называется основной или рабочей. Отверстия в корпусе долж-

ны исключать возможность случайного проникновения и касания внутренних частей аппаратуры пальцами, цепочками для украшений и т.п.

вероятность безотказной работы. Она оценивается экспериментально отношением числа N работающих (не испортившихся) за время t изделий к общему числу n0 испыты-вавшихся изделий:

Эта характеристика оценивает возможность сохранения изделием работоспособности в заданном интервале времени. Другим количественным показателем надежности является интенсивность отказов λ(ί). Этот показатель равен отношению числа отказов dN к произведению времени dt на общее число N работающих элементов:

14) Электрическим диполем называют систему, состоящую из двух равных, но противоположных по знаку точечных электрических зарядов, расположенных на некотором расстоянии друг от друга
электрический момент– вектор, направленный от отрицательного заряда к положительному и равный произведению заряда на плечо диполя:
p=ql
Методы регистрации биопотенциалов: электрокардиография, электроэнцефалография, электромиография
Электрокардиография- регистрация биопотенциалов, возникающих в сердечной мышце при ее возбуждении.

15. Интерференция света.

Интерференция света. Интерференция является результатом суперпозиции световых волн. Наложение происходит всегда, когда в среду посылаются две волны и больше. Но интерференция происходит только при условиия, что свет исходит от когерентных источников. Волны называнются когерентными, если между ними существует постоянная разность фаз. Два естественных источника света не могут быть когерентным, поскольку электромагнитные волны в них испускаються произвольно многими атомами и молекулами, и волновые фазы изменяются часто и беспорядочно.
Когерентные световые лучи формируются, если они порождаются одним источником и разделены с помощью специальной призмой. Световые лучи могут стать когерентными также при их отражении от обеих поверхностей тонкой плёнки. Источниками когерентного света являются лазеры.
Если когерентные световые лучи падают на экран, они формируют стабильную комбинацию световых максимумов и минимумов (светлые и темные полосы). Световые максимумы формируются в местах, где когерентные лучи от обоих источников находятся в одинаковой фазе, минимумы - где они находятся в противофазе (противоположной фазе).

16. Дифракция света.

Дифракция света. Дифракция волн происходит при их прохождении через щель и вокруг препятствий. Эксперимент показывает, что волны могут обгибать объекты достаточно малого размера. Так, если длина волны меньше ширины щели или препятствия, то происходит отражение и поглощение света. А если длина волны света больше размера припятствия или щели, то происходит дифракция волн: проходя через узкую щель, световой луч разделяется, а, встречая на пути препятствия, огибает их.
Дифракционная решетка состоит из многих щелей, расположенных параллельно друг другу. При прохождении через щели дифракционной решетки световые волны интерферируют, формируя на экране дифракционную картину. Прохождение световых волн через щели решетки зависит от их длины. Излучение различных атомов и молекул, в свою очередь, характеризуется определенным соотношением световых волн разных длин волн. Таким образом, спектр излучения атомов и молекул, полученный разложением белого света с помощью дифракционной решетки, используется для спектрального анализа химического состава вещества.

17. Разрешающая способность оптических приборов. Особенности разрешающей способности человеческого глаза.

Разрешение и полезное увеличение в микроскопах.

Качество изображения, полученного с помощью микроскопа, зависит от разрешения микроскопа. Разрешение микроскопа – величина, обратная минимальному расстоянию между двумя точками в образце, при котором эти точки видны отдельно. Когда это расстояние сравнимое с длиной волны света, происходит дифрация света, и изображение становится тусклым. Минимальное расстояние d, которое может быть решено микроскопом: d = λ/(2·n·sin θ), где λ - длина волны света в воздухе, n - показатель преломления среды между объективой линзы и изучаемым объектом и θ - так называемый апертурный угол (рис. 7).
Апертурный угол – угол между двумя крайними лучами конического светового пучка, выходящего из точки рассматриваемого предмета и попадающего в объектив. Апертура объектива, равная A = n·sin θ/2, обозначена на инструменте. Если две точки в образце разделены менее чем на d, их дифракционные картины накладываются друг на друга, в результате чего они не могут быть различены отдельно.

Рис. 7. Апертурный угол

Вычислено, что предел разрешения светового микроскопа составляет около 250 нанометров, что позволяет получить полезное увеличение (при котором глаз различаетвсе элементы структуры объекта, разрешимые микроскопом) равное 400. Эта величина является пределом полезного увеличения обычного светового микроскопа. Большее увеличение не будет способствовать рассмотрению никаких дополнительных деталей объекта.
Есть два пути улучшить разрешение микроскопа: использовать наиболее короткие длины световых волн и заполнять пространство между рассматриваемым объектом и объективом жидкостью с большими показателями преломления. Так, погружение объекта в масло кедра, которое иеет показатель преломления n = 1,4, позволяет улучшить изображение объекта. Ультрафиолетовые лучи имеют меньшую длину волны, чем видимый свет, и позволяет увеличить разрешение микромкопа. Кроме того, ультрафиолетовые микроскопы используются для изучение струтутуры биологических макромолекул (например, нуклеиновых кислот и белков), которые сильно поглощают ультрафиолетовый свет, что позволяет получать хороший контраст

18 Оптический и электронный микроскоп.

Световой микроскоп.

Микроскоп является одним из наиболее часто используемых в медицине физических приборов. Световой микроскоп есть в каждой клинической лаборатории..
Микроскоп применяется для увеличения рассматриваемых объектов. Для этого в микроскопе используют две линзы. Одна из них расположена возле изучаемого объекта и называется объективом. Другая линза – позволяет рассмотреть конечное изображение объекта и называется окуляром, или глазной линзой. Объектив и окуляр – собирающие линзы с небольшим фокусным расстоянием. В действительности обе линзы представляют собой совокупность нескольких линз, которые вместе способствуют уменьшению хроматической и сферической аббераций.
При использовании микроскопа объект (АВ) устанавливают на немного большем расстоянии от объектива, чем его фокусное расстояние F1 от центра линзы объектива (Рис. 6). Он формирует действительное, перевернутое и увеличенное изображение объекта (А1В1) в тубусе микроскопа. Изображение, полученное с помощью объектива, становится объектом для окуляра, который расположен так, чтобы изображение объектива находилось впереди фокуса F2 линзы окуляра. Окуляр функционирует как простое увеличительное стекло, используемое для просмотра изображения, полученного спомощью объектива. В результате формируется мнимое, перевернутое и увеличенное изображение первоначального объекта (или мнимое, прямое, увеличенное изображение изображения, полученного с помошью объектива) – А2В2.

Общее увеличение микроскопа находят, умножив увеличение объектива на увеличение окуляра. Величину увеличения каждой из линз определяют отношением расстояния от рассматриваемого объекта к фокусному расстоянию объектива и окуляра.

Как было упомянуто выше, разрешение светового микроскопа ограничено величиной длины волны света. Значительно большее разрешение можно достигнуть заменой света на поток электронов. Хотя электроны являются частицами, они также обладают волновыми свойствами. В электронных микроскопах электроны, полученные термоэмиссией, направляются и ускоряются разностью электрических потенциалов и фокусируются магнитными линзами. Длина волны, полученная с помощью электронов, ускоренных разностью потенциалов 50 кВ, в 5-10 меньше длин волн видимого света. На практике разрешение электронного микроскопа почти в 1000 раз превышает предельное разрешение светового микроскопа

19. Поляризация света. Свет естественный и плоско поляризованный. Поляризация при двойном лучепреломлении. Поляризационные устройства.

Поляризация света. Свет, подобно любой другой поперечной волне, можно поляризовать. При распространении в среде поперечной волны плоскость колебания вектора напряжённости электрического поля может проходить через любую линию, перпендикулярную направлению распространения волны.
Электромагнитные волны представляют собой колебания напряженностей электрического и магнитного полей во взаимно перпендикулярных плоскостях, перпендикулярных также направлению движения волны. Если колебания вектора напряженности электрического поля осуществляются преимущественно в одной плоскости, то говорят, что волна линейно поляризована вдоль этого направления. Излучение одиночного атома или молекулы поляризовано. В образце вещества атомы и молекулы излучают произвольно, поэтому световой луч неполяризован.
Поляризованный свет может быть получен из неполяризованного несколькими способами. Наиболее распространённым является поглощение света поляроидами, представляющими собой пленку с нанесенными на нее кристаллическими веществами, способными пропускать свет преимущественно в одной конкретной плоскости.

20. Геометрическая оптика - раздел оптики, в котором законы распространения света в прозрачных средах рассматриваются с точки зрения геометрии. Волновая оптика при λ = 0 переходит в геометрическую. Геометрическая оптика оперирует понятием световых лучей, независимых друг от друга и подчиняющихся известным законам преломления и отражения.
Световой луч - это линия, вдоль которой распространяется энергия излучения. Световому лучу в волновой оптике соответствует нормаль (перпендикуляр) к волновой поверхности.
Оптической системой называется совокупность оптических деталей (призмы, линзы, зеркала), предназначенных для преобразования пучков световых лучей посредством преломления и отражения на поверхностях, которыми ограничены оптические детали.
Оптическую систему называют центрированной, если центры сферических поверхностей или оси симметрии других поверхностей, образующих оптическую систему, расположены на одной прямой, называемой оптической осью.

ВОЛОКОННАЯ ОПТИКА, технология передачи света по тонким нитям из прозрачных материалов. Этот свет используется для передачи электронных сигналов на большие расстояния. В медицине световоды используют для решения двух задач: передачи световой энергии, главным образом для освещения холодным светом внутренних полостей, и передачи изображения. Для первого случая не имеет значения положение отдельных волокон в световоде, для второго существенно, чтобы расположение волокон на входе и выходе световода было одинаковым.

Эндоскопы работают за счёт использования явления волоконно-оптических пучков, которые состоят из многочисленных волоконно-оптических кабелей. Волоконно-оптические кабели изготовлены из оптически чистого, например, кварцевого стекла и они тонкие, как человеческий волос.

Полное внутреннее отражение

Волоконно-оптические кабели с использованием полного внутреннего отражения созданы для возможности нести цифровую информацию. Когда свет проходит из одной среды в другую он преломляется. Если свет путешествует от менее плотной среды в плотной среде, в которой он преломляется показатель полного внутреннего отражения. Обратное справедливо, если свет путешествует из плотной среды в менее плотную среду. В оптических кабелеях свет проходит сквозь плотное стекло core (high refractive index), постоянно отражаясь от менее плотной обшивки (Нижний показатель преломления). Это происходит потому, что поверхность сердечника действует как идеальное зеркало и угол света всегда больше, чем критический угол. [4]

Абберация линз

а) Сферическая аберрация — монохроматическая аберрация, обусловленная тем, что крайние (периферические) части линзы сильнее отклоняют лучи, идущие от точки на оси, чем ее центральная часть. В результате этого изображение точки на экране получается в виде светлого пятна, рис. 3.5

Рис.3.5

Этот вид аберрации устраняется путем использования систем, состоящих из вогнутой и выпуклой линз.

б)Второй источник аберраций связан с дисперсией света. Поскольку показатель преломления зависит от частоты, то, и фокусное расстояние и другие характеристики системы зависят от частоты. Поэтому лучи, соответствующие излучению различной частоты, исходящие из одной точки предмета, не сходятся в одной точке плоскости изображения даже тогда, когда лучи, соответствующие каждой частоте, осуществляют идеальное отображение предмета. Такие аберрации называются хроматическими, т.е. хроматическая аберрация заключается в том, что пучок белого света, исходящий из точки, дает ее изображение в виде радужного круга, фиолетовые лучи располагаются ближе к линзе, чем красные, рис. 3.8

Рис. 3.8. Хроматическая аберрация

Для исправления этой аберрации в оптике используют линзы, изготовляемые из стекол с разной дисперсией: ахроматы
Астигматизм — монохроматическая аберрация, состоящая в том, что изображение точки имеет вид пятна эллиптической формы, которое при некоторых положениях плоскости изображения вырождается в отрезок.

Астигматизм косых пучков проявляется тогда, когда пучок лучей, исходящих из точки, падает на оптическую систему и составляет некоторый угол с ее оптической осью. На рис. 3.6а точечный источник расположен на побочной оптической оси. При этом возникают два изображения в виде отрезков прямых линий, расположенных перпендикулярно друг другу в плоскостях I и П. Изображение источника можно получить лишь в виде расплывчатого пятна между плоскостями I и П.

Астигматизм, обусловленный асимметрией оптической системы. Этот вид астигматизма возникает, когда симметрия оптической системы по отношению к пучку света нарушена в силу устройства самой системы. При такой аберрации линзы создают изображение, в котором контуры и линии, ориентированные в разных направлениях, имеют разную резкость. Это наблюдается в цилиндрических линзах

Если плоскость луча строго перпендикулярна оси линзы, то луч "не знает", что линза не сферическая, а цилиндрическая. Для плоского луча картина ничем не будет отличаться от такого же луча, проходящего через центр сферической линзы.

Поэтому цилиндрическая линза сжимает параллельный пучок лучей не в точку (как обычная сферическая), а в линию. В прямую линию. С точки зрения физики это означает, что в направлении, перпендикулярном оси, такая линза обладает вполне определённым фокусным расстоянием, а в направлении параллельно оси - ведёт себя как плоско-параллельная пластина (с фокусным расстоянием, равным бесконечности).

Оптический микроскоп. Диапазон размеров объектов, который можно наблюдать в современный оптический микроскоп (использует свойства линз и зеркал), может быть менее 100нм, что ограничивается физика света.

В связи с этим современные оптические микроскопы позволяют увеличение объекта не более чем в 2000 раз.

В начале микроскопа давали лишь 2-хмерное изображение наблюдаемого объекта.

Для того, чтобы наблюдать 3-хмерные объекты, был разработан стериомикроскоп, который использует различные оптические пути, для левого и правого окуляра. Однако всё равно такой микроскоп не решает вопрос об измерении высоты и других параметров рельефов, наблюдаемого объекта. Он лишь дает объёмное восприятие объекта человеком.

В связи с развитием вычислительной техники последние десятилетия быстро развиваются методы измерения трехмерного рельефа поверхности с помощью оптических микроскопов.

Особенности активных методов – в них используются конструктивные усовершенствования микроскопа, дополнительное освещение через фильтр или лазер.

Пассивные -методы анализа изображения.

Излучение солнца

Весь спектр излучения Солнца принято делить на ряд областей (в скобках указаны граничные длины волн λ):

1. гамма-излучение (λ < 10-5мкм);

2. рентгеновское излучение (10-5мкм < λ < 10-2мкм);

3. ультрафиолетовая радиация (0,01 мкм < λ < 0,39 мкм);

4. видимое излучение спектра или видимый свет (0,39 мкм < λ << 0,76 мкм), который, в свою очередь, подразделяется на семь цве­тов:

5)инфракрасная радиация (0,76 мкм < λ < 3000 мкм);

Основным источником теплового излучения в природе является Солнце Полная плотность потока солнечного излучения на верхней границе земной атмосферы составляет 1,93 кал/см2∙мин и называется солнечной постоянной. При прохождении через атмосферу мощность солнечного излучения уменьшается. В зависимости от состояния атмосферы и высоты Солнца над горизонтом, уменьшается также и солнечная постоянная. Изменяется и спектральный состав излучения.

Электромагнитное излучение, занимающее спектральную область от 0,76 мкм до 400 мкм (от красной границы видимого света до коротковолнового радиоизлучения) называется инфракрасным (ИК) излучением.

В медицине применяется более коротковолновая часть ИК-излучения. ИК-излучение невидимо для глаза. Основное его действие – тепловое, но может вызывать и химические реакции, например, действует на специальную фотоэмульсию.

Первичное действие ИК-излучения на организм состоит в прогревании поверхностно лежащих тканей; при этом излучение проникает в ткани на глубину до 2 см.

Электромагнитное излучение, занимающие спектральную область от 380 нм до 10 нм (от фиолетовой границы видимого света до длинноволнового рентгеновского излучения) называется ультрафиолетовым (УФ) излучением.

Оно делится на 2 области: от 380 до 200 нмближнее или флуоресцентное УФ-излучение; от 200 до 10 нмдальнее или вакуумное.

УФ-излучение поглощается простым стеклом, а при длине волны меньше 200 нм поглощается тонким слоем любого вещества, включая воздух.

УФ-излучение оказывает сильное биологическое действие на живые организмы, которое может быть и полезным, и вредным. Его первичное действие связано с фотохимическими реакциями, происходящими в тканях при поглощении излучения. В ткани оно проникает на глубину до 1 мм и проявляется на месте воздействия эритемой.

В соответствии с особенностями биологического действия выделяют следующие зоны УФ-излучения:

Зона А (380-315 нм) – антирахитная – отличается укрепляющим и закаливающим организм действием. Используется в профилактических и гигиенических целях.

Зона В (315-280 нм) – эритемная – характеризуется эритемным действием и используется в лечебных целях.

Зона С (280-200 нм)бактерицидная – отличается бактерицидным действием; используется в качестве средства дезинфекции.

23. Тепловым излучением тел называется электромагнитное излучение, возникающее за счет той части внутренней энергии тела, которая связана с тепловым движением его частиц.

Основными характеристиками теплового излучения тел нагретых до температуры T являются:

1. Энергетическая светимость R (T) - количество энергии, излучаемой в единицу времени с единицы поверхности тела, во всем интервале длин волн. Зависит от температуры, природы и состояния поверхности излучающего тела. В системе СИ R(T) имеет размерность [Вт/м2].

2. Спектральная плотность энергетической светимости r(l,Т) = dW/dl - количество энергии, излучаемое единицей поверхности тела, в единицу времени в единичном интервале длин волн (вблизи рассматриваемой длины волны l). Т.е. эта величина численно равна отношению энергии dW, испускаемой с единицы площади в единицу времени в узком интервале длин волн от l до l+dl, к ширине этого интервала. Она зависит от температуры тела, длины волны, а также от природы и состояния поверхности излучающего тела. В системе СИ r(l, T) имеет размерность [Вт/м3].

Энергетическая светимость R(T) связана со спектральной плотностью энергетической светимости r(l, T) следующим образом:

(1) [Вт/м2]

3. Все тела не только излучают, но и поглощают падающие на их поверхность электромагнитные волны.Для определения поглощательной способности тел по отношению к электромагнитным волнам определенной длины волны вводится понятие коэффициента монохроматического поглощения - отношение величины поглощенной поверхностью тела энергии монохроматической волны к величине энергии падающей монохроматической волны:

(2)

Коэффициент монохроматического поглощения является безразмерной величиной, зависящей от температуры и длины волны. Он показывает, какая доля энергии падающей монохроматической волны поглощается поверхностью тела. Величина a (l,T) может принимать значения от 0 до 1.

Абсолютно черным телом называется тело, которое поглощает все падающее на него излучение независимо от направления падающего излучения, его спектрального состава и поляризации (ничего не отражая и не пропуская).

Для абсолютно черного тела, спектральная плотность энергетической светимости является некоторой универсальной функцией длины волны и температуры f(l,T) и не зависит от его природы.

Все тела в природе частично отражают падающее на их поверхность излучение и поэтому не относятся к абсолютно черным телам. Если коэффициент монохроматического поглощения тела одинаков для всех длин волн и меньше единицы (a(l, T) = aТ = const<1), то такое тело называется серым. Коэффициент монохроматического поглощения серого тела зависит только от температуры тела, его природы и состояния его поверхности.

Закон Кирхгофа - отношение испускательной способности тела к его поглощательной способности одинаково для всех тел и равно спектральной плотности энергетической светимости абсолютно черного тела:

 

Закон Стефана-Больцмана - энергетическая светимость абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры:

При повышении температуры максимум испускательной способности смещается влево

В 1900 г. М. Планк получил формулу для расчета испускательной способности абсолютно черного тела теоретически. Для этого ему пришлось отказаться от классических представлений о непрерывности процесса излучения электромагнитных волн. По представлениям Планка, поток излучения состоит из отдельных порций - квантов, энергии которых пропорциональны частотам света:

 

24) Природа рентгеновского излучения. Устройство рентгеновских трубок и простейших рентгеновских аппаратов. Ренгтеновская компьютерная томография.
Рентгеновы лучи — это разновидность электромагнитных волн, к числу которых относятся также световые лучи, гамма-лучи радия и лучи, испускаемые радиоантеннами.
Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетических переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках.
Сама рентгеновская трубка — это достаточно простое устройство, схема которого примерно такова. На находящиеся в вакууме в запаянном сосуде катод и анод («антикатод») подается мощный постоянный электрический потенциал. В результате электроны, испущенные катодом, ускоряются в электрическом поле и резко тормозятся при соударении с анодом. При этом испускается «тормозное излучение» — генерируется электромагнитное излучение рентгеновского диапазона. Одновременно из внутренних частей электронных оболочек атомов металла, из которого состоит анод, выбиваются электроны, а получившиеся пустые места заполняются электронами из внешних слоев электронных оболочек. В ходе этого процесса тоже испускается рентгеновское излучение, спектр которого специфичен для каждого материала

Как работает рентгеновский аппарат
Питание аппарата осуществляется обычно от электросети переменного тока в 126 или 220 В. Однако современные рентгеновские установки работают от постоянного тока существенно более высокого напряжения. В связи с этим в состав блока питания входят трансформатор (или система трансформаторов) и выпрямитель тока (иногда выпрямитель может отсутствовать — при низкой мощности аппарата).
Генератор излучения — это рентгеновская трубка, одна или несколько.
Система управления — это распределительное устройство, то есть пульт управления, регулирующий работу всей установки. Кроме того, аппарат включает в себя штатив (систему штативов), на который крепится генератор излучения, а также приспособления для укладки больных и т.п. устройства.
Принцип работы установки следующий. Переменный ток от электросети подводится к первичной обмотке трансформатора. С его вторичной обмотки снимается более высокое напряжение и подается на излучатель непосредственно (полуволновые установки) или через выпрямитель — кенотрон. Накалом катодной нити рентгеновской трубки регулируется ее работа.

Компьютерная томография (КТ) - современный метод лучевой диагностики, позволяющий получить послойное изображение любой области человека, оценить состояние исследуемых органов и тканей, локализацию и распространенность патологического процесса.
Принцип работы рентгеновского компьютерного томографа основывается на круговом просвечивании исследуемой области тонким пучком рентгеновских лучей перпендикулярным оси тела, регистрации ослабленного излучения с противоположной стороны системой детекторов и преобразование его в электрические сигналы: проходя через тело человека, рентгеновские лучи поглощаются различными тканями в разной степени. Затем X-лучи попадают на специальную чувствительную матрицу, данные с которой считываются компьютером. Томограф позволяет получить четкое изображение нескольких срезов тела, а компьютер обрабатывает снимки в очень качественное объемное, трехмерное изображение, которое позволяет увидеть в подробностях топографию органов пациента, локализацию, протяженность и характер очагов заболеваний, их взаимосвязь с окружающими тканями.

25. РЕНТГЕНОВСКИЕ СПЕКТРЫ - спектры испускания (эмиссионные Р. с.) и поглощения (абсорбционные Р. с.) рентгеновского излучения. В зависимости от механизма возбуждения рентг. излучения, от излучающей системы Р. с. могут быть непрерывными или линейчатыми. Линейчатый Р. с. испускают атомы и ионы после ионизации их внутр. оболочек при последующем заполнении образовавшихся вакансий; такой Р. е. наз. характеристическим, т. к. однозначно характеризует излучаемый атом. Непрерывным является тормозной Р. с. (см. Тормозное излучение),спектр синхротронного излучения или ондуля торного излучения в рентг. диапазоне.

1. Физический этап.. Физический этап заключается в передаче энергии фотона или частицы одному из электронов атома. Для ионизации большинства элементов, входящих в состав биологического субстрата необходимо поглощение энергии в 10-12 эВ. Ионам и возбужденным атомам свойственна повышенная химическая реактивность, они способны вступать в такие реакции, которые невозможны для обычных атомов. Длительность этапа 10-12 -10-8 с.

2. Физико-химический этап взаимодействия измерения с веществом протекает в зависимости от состава и строения облучаемого вещества. Принципиальное значение имеет наличие в облучаемой ткани воды и кислорода. В основе первичных радиационно-химических изменений молекул лежат 2 механизма, обозначаемые как прямое и косвенное действие радиации.
Под прямым действием радиации понимают передачу энергии излучения непосредственно молекуле, которая испытывает превращения. Ионизирующие излучения (точнее – электроны, образовавшиеся в момент облучения) взаимодействуют непосредственно с биомолекулами, в результате чего происходит перенос части кинетической энергии на биомолекулы. Это приводит их в ионизованное или возбужденное состояние. При ионизации и возбуждении сложных молекул происходит их диссоциация (распад) в результате разрыва и химических связей. Прямое воздействие радиации может вызвать расщепление молекулы белка, разрыв наименее прочных связей, отрыв радикалов и другие денатурирующие явления. В первую очередь разрушаются ферменты и гормоны.Под косвенным действием понимают изменение молекул клеток и тканей, обусловленные продуктами радиационного разложения (радиолиза) воды и растворенных в ней веществ, а не энергией излучения, поглощенной самими молекулами. В организме косвенное действие осуществляется через продукты радиолиза, воды, которая в живой клетке составляет 60-70 и даже 90% ее массы. Именно в воде растворены белки, нуклеиновые кислоты, ферменты, гормоны и другие жизненно важные вещества, являющиеся основными компонентами клетки, которым легко может быть передана энергия, первоначально поглощённая водой.При взаимодействии ионизирующих излучений (гамма-квантов, заряженных частиц) с атомами происходит ионизация и возбуждение атомов. Второй этап радиационного напряжения длится от 10-7 с до нескольких часов.

3. Этап биомолекулярных повреждений. В результате прямого и косвенного действия излучений происходят изменения белков, липидов и углеводов.. Повреждаются микромолекулы ферментов, нарушается синтез РНК, тормозится синтез ДНК, наблюдаются однонитчатые и двунитчатые разрывы, приводящие к хромосомным аберрациям. Имеют место генные мутации. Поражение ядра приводит к синтезу изменённых белков (в результате нарушения РНК), которые впослед-ствии приводят к образованию злокачественных опухолей, вторичных радиотоксинов, вызывающих старение и лучевую болезнь.

4. Этап ранних биологических и физиологических эффектов- Очень большие дозы вызывают гибель клеток, Клетка, утратившая способность делиться, не всегда имеет признаки повреждений, она может еще долго жить и после облучения.Различные клетки обладают разной радиочувствительностью. Наибольшей радиочувствительностью обладают делящиеся клетки. Это кроветворные клетки костного мозга, зародышевые клетки семенников и яичников, клетки эпителия тонкого кишечника. Сюда же относят и лимфоциты, которые, несмотря на их дифференциацию и неспособность к делению, обладают высокой радиочувствительностью. Средней радиочувствительностью обладают клетки зародышевого слоя кожи и слизистых оболочек, сальных желез, волосяных фолликулов, потовых желез, эпителия хрусталика, сосудов, хрящевые клетки. Третью группу составляют радиорезистентные клетки (обладающие высокой устойчивостью к облучению). Это клетки печени, почек, нервные клетки, мышечные клетки, клетки соединительной ткани, костные клетки. На клеточном уровне репарация (восстановление клетки) длится до нескольких часов. Может наблюдаться остановка деления, приводящая к гибели клеток, трансформация клеток в злокачественные.Группы клеток образуют ткани, из которых состоят органы и системы органов. Ткань – это не просто сумма клеток, это уже система, имеющая свои функции, не сводимые к функции отдельных клеток. Более подвержены радиации ткани, клетки которых активно делятся. Поэтому быстрее повреждается красный костный мозг, желудочно-кишечный тракт. Хотя нервная ткань принадлежит к достаточно устойчивым структурам, в функциональном отношении ЦНС радиочувствительна, так как самые ранние реакции организма на общее облучение проявляются в расстройстве подвижности и уровнове-шенности процессов возбуждения и торможения нервной системы. Половые железы очень чувствительны к радиации. Яичники взрослых женщин содержат большое число незаменяемых яйцеклеток, находящихся на разных стадиях развития. В результате репродуктив-ной гибели яйцеклеток может наступить стойкое бесплодие.Гибель отдельных органов может наступить в результате развития злокачественных новообразований (опухолей) – рака щитовидной железы, молочной железы, лёгких и т.д. 5. Этап отдаленных биологических эффектов- стойкие нарушения функций отдельных органов и систем, сокращение продолжительности жизни, соматические эффекты (лейкозы, злокаче-ственные новообразования, катаракта и др.), изменение генетической ха-рактеристики в результате мутаций. Особенно опасно накопление мутаций в генофонде, в результате чего генофонд будет не в состоянии обеспечить воспроизводство нации.

Рентгеноскопия. Рентгеновский прибор состоит из источника рентгеновских лучей (рентгеновской трубки) и флуоресцирующего экрана. После прохождения рентгеновских лучей через тело пациента врач наблюдает теневое его изображение. Между экраном и глазами врача должно быть установлено свинцовое окно для того, чтобы защитить врача от вредного действия рентгеновских лучей. Этот метод дает возможность изучить функциональное состояние некоторых органов. Например, врач непосредственно может пронаблюдать движения легких, прохождение контрастного вещества по желудочно-кишечному тракту. Недостатки этого метода – недостаточно контрастные изображения и сравнительно большие дозы излучения, получаемые пациентом во время процедуры.

Флюорография. Этот метод состоит в получении фотографии с изображением части тела пациента. Используют, как правило, для предварительного исследования состояния внутренних органов пациентов с помощью малых доз рентгеновского излучения.

Рентгенография. (Радиография рентгеновских лучей). Это метод исследования с помощью рентгеновских лучей, в ходе которого изображение записывается на фотографическую пленку. Фотографии делаются обычно в двух перпендикулярных плоскостях. Этот метод имеет некоторые преимущества. Рентгеновские фотографии содержат больше деталей, чем изображение на флуоресцентном экране, и потому они являются более информативными. Они могут быть сохранены для дальнейшего анализа. Общая доза излучения меньше, чем применяемая в рентгеноскопии.

Компьютерная рентгеновская томография. Оснащенный вычислительной техникой осевой томографический сканер является наиболее современным аппаратом рентгенодиагностики, который позволяет получить четкое изображение любой части человеческого тела, включая мягкие ткани органов.

26.Радиоактивность.Основной закон радиоактивного распада.Активность.Альфа-распад атомных ядер. Спектр альфа-излучения. Электронный и позитронный распад ато



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: