ИСХОДНОЕ СЫРЬЕ И МАТЕРИАЛЫ




Общие сведения

Полиэтилентерефталат – синтетический линейный термопластичный полимер, принадлежащий к классу полиэфиров. Продукт поликонденсации терефталевой кислоты и моноэтиленгликоля. Полиэтилентерефталат может эксплуатироваться как в аморфном, так и в кристаллическом состоянии. Аморфный полиэтилентерефталат – твердый прозрачный материал, кристаллический – твердый непрозрачный бесцветный. Степень кристалличности может быть отрегулирована отжигом при температуре между температурой стеклования и температурой плавления. Товарный полиэтилентерефталат выпускается обычно в виде гранулята с размером гранул 2-4 миллиметра.

Обычное обозначение полиэтилентерефталата на российском рынке – ПЭТ, но могут встречаться и другие обозначения: ПЭТФ или PET или PETP (полиэтилентерефталат), APET (аморфный полиэтилентерефталат).

В промышленном масштабе ПЭТ начал выпускаться как волокнообразующий полимер, но вскоре занял одно из ведущих мест и в индустрии полимерной упаковки. По темпам роста потребления в настоящее время полиэтилентерефталат является наиболее быстрорастущим полимерным материалом.

Волокнообразующий полиэтилентерефталат известен на рынке под торговыми марками лавсан или полиэстер.

Технические требования, предъявляемые к отечественному ПЭТ, определяются «ГОСТ Р 51695-2000 Полиэтилентерефталат. Общие технические условия».

Устройство агрегатов для сушки ПЭТ показано на рисунке. Сырье засасывается из мешка вакуумным загрузчиком (на рисунке не показан). Загрузчик имеет собственное дозирующее устройство, с помощью которого гранулы ПЭТ порционно подаются в бункер таким образом, чтобы он был всегда заполнен сырьем. Сырье перемещается в бункере сверху вниз так, чтобы во время пребывания каждой порции в бункере было не менее четырех часов. Снизу в бункер через выходное сопло подается подогретый нагревателем воздух. Отобрав влагу от сырья, воздух через фильтр и холодильник попадает в адсорбер-осушитель и затем снова в бункер. Адсорберов два. Когда один работает, другой генерируется. В рабочем контуре датчики непрерывно измеряют степень сухости воздуха - точку росы. Превышение допустимого значения точки росы является сигналом того, что рабочий адсорбер пресыщен, заслонки автоматически переключаются, и роль адсорберов

Преформу при ее производстве следует охлаждать быстро, так, чтобы ПЭТ не успел закристаллизоваться и затвердел, т.е. перешел в стеклообразное состояние, сохранив аморфную, некристаллическую структуру, которую он имеет в расплавленном состоянии. С точки зрения физики стекло - та же жидкость, только величина его вязкости столь огромна, что и за сотни лет не удается заметить деформаций стеклообразных сред под действием напряжений. С ростом температуры вязкость падает настолько, что полимер приобретает способность деформироваться за разумные промежутки времени. На этом и основан способ получения бутылок из преформ - достаточно разогреть преформу до температуры порядка ста градусов, чтобы за секунды из нее можно было выдуть бутылку.

 

 

 

1 - выходное сопло;

2 - адсорберы;

3 - переключатели;

4 - воздуходувка;

5 - основной нагреватель;

6 - нагреватель регенератора;

7 - выходная труба

8 - микрофильтр

9 - воздухоохладитель

2.1 Получение in situ нанокомпозитов на основе ПЭТ

Наиболее широко применяемой маркой ПЭТ является полиэтилентерефталат в чистом виде, однако серьезное место занимают и различные композиционные материалы на основе ПЭТ.

Проблема получения полимерных материалов с требуемыми эксплуатационными характеристиками актуальна для ПЭТ, поскольку этот материал не является идеальным с точки зрения механических, барьерных и других свойств, и может быть решена посредством введения в полимерную матрицу различных наполнителей. Однако при этом требуется значительное количество этих наполнителей (высокие степени наполнения), что приводит к снижению ряда эксплуатационных показателей материала (например, увеличению хрупкости, увеличению себестоимости производства и др.). Кроме того, эффекты, достигаемые при наполнении полимеров традиционными наполнителями, значительно уступают эффектам, которые проявляются в нанокомпозитах (за счет введения небольших количеств наноразмерных наполнителей, способных улучшать одни эксплуатационные характеристики, не ухудшая другие при более низкой себестоимости производства).

Создание нанокомпозиционных материалов осуществлялось непосредственно в процессе синтеза полиэтилентерефталата (in situ). Использование изофталевой кислоты в качестве одного из мономеров синтеза ПЭТ обеспечило материалам пониженную температуру плавления, а введением наночастиц в полимерную матрицу было достигнуто повышение механических свойств материала, а также его термостойкость и высокие барьерные характеристики по отношению к газам.

Органомодификацию монтмориллонита проводили различными алкиламмониевыми соединениями, согласно представленной ниже схеме (рис. 2):

 

Рис. 2. Схема органомодификации монтмориллонита

Кроме того, в целях внедрения и хорошего распределения пластин слоистого силиката в полимере была разработана методика закрепления катализатора на поверхности слоистого силиката. Таким образом, формирование макромолекул происходило непосредственно на поверхности нанонаполнителя. Схема процесса полимеризации мономера на поверхности силиката приведена на рис. 3 (а, б).

 

Рис. 3. Схема образования нанокомпозита

Были проведены исследования механических характеристик изготовленных образцов материала, таких как ударная вязкость, предельная прочность, относительное удлинение при разрыве, модуль упругости и др. Исследован целый комплекс эксплуатационных характеристик материалов на основе ПЭТ, в т.ч. барьерные свойства (проницаемость по кислороду), электрофизические (электрическая прочность, пробивное напряжение, удельное объемное электрическое сопротивление), реологические свойства и т.д.

Наряду с электрическими и механическими испытаниями проведены испытания на теплостойкость полученного материала, которые подтвердили способность диэлектрика выдерживать воздействие повышенной температуры без недопустимого ухудшения его свойств.

Исследование морфологии и структурной организации модифицированного ПЭТ, степени и особенностей распределения наноразмерных наполнителей в полимерной матрице позволило выявить основные закономерности и установить взаимосвязь объемов введенного наполнителя на различные характеристики материала.

Исследования в области катализа процесса синтеза ПЭТ и нанокомпозитов на его основе с использованием нового комплексного катализатора, а также катализатора, являющегося одновременно органическим модификатором в межслоевом пространстве монтмориллонита, позволили значительно сократить время процесса синтеза и достичь наилучшей степени эксфолиации частиц алюмосиликата в объеме полимерной матрицы, что в свою очередь обеспечило наилучшее использование потенциала нанокомпозитных материалов по совокупности эксплуатационных характеристик при минимальных степенях наполнения полимерной матрицы полиэтилентерефталата.

 

2.2 Закономерности твердофазной поликонденсации ПЭТ

С целью получения высокомолекулярного продукта на основе ПЭТ с улучшенными физико-химическими, диэлектрическими свойствами, гидролитической стойкостью и незначительным содержанием концевых карбоксильных групп, синтезы осуществляли способом твердофазной поликонденсации (ТФПК).

Предварительно полученный и высушенный ПЭТ подвергали термической обработке в атмосфере инертного газа или вакууме.

Удлинение цепи происходит за счет реакций функциональных групп макромолекул. Благодаря увеличению молекулярной массы, полимер имеет улучшенные физико-химические и диэлектрические свойства, обладает гидролитической стойкостью и незначительным содержанием карбоксильных групп. Рост молекулярной массы может происходить:

- взаимодействием карбоксильной и гидроксильной групп двух макромолекул с образованием сложноэфирной связи и выделением этиленгликоля.

 

 

- взаимодействием гидроксильных групп макромолекул с образованием простой эфирной связи и выделением воды.

 

 

Подбирая оптимальные условия для максимального роста степени полимеризации, а следовательно, и для улучшения свойств полиэтиленте-рефталатов проводились синтезы в твердой фазе образцов полимеров. Полученные результаты и условия проведения твердофазной поликонденсации отражены в табл. 3. Из данных, представленных в табл. 3 можно заключить, что оптимальными условиями для ТФПК образцов ПЭТ, являются 240 °С в течение 8 часов.

Полученные результаты свидетельствуют о существенном влиянии на итоги твердофазной поликонденсации химического состава каталитической системы. Как следует из данных таблицы максимальный эффект повышения молекулярной массы ПЭТ достигается при использовании в качестве катализатора ацетата натрия (0,075-0,125 %).

В качестве одного из катализаторов при синтезе полиэтилентерефталата использовался тетрабутоксититан (0,075 вес. %).

Промышленные образцы ПЭТ в условиях твердофазной поликонденсации обнаруживают менее заметное повышение молекулярной массы. Это говорит о том, что разработанный нами комплекс стабилизаторов и катализаторов является более эффективным по сравнению со стандартными катализаторами и стабилизаторами, используемыми в промышленности.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-12-28 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: