Расчет электрических цепей с одним источником методом эквивалентных преобразований. Использование законов Кирхгофа.
Разнообразие и сложность преобразующих электрическую энергию схем мнимые. Существуют лишь четыре способа соединения электрических элементов:
· последовательное соединение
· параллельное соединение
· соединение элементов звездой
· соединение элементов треугольником
Для расчета электрической цепи используются различные методы. В частности можно использовать метод эквивалентных преобразований, суть которого в том, что в процессе решения исходная простоя электрическая цепь путем эквивалентных преобразований приводится к виду с одним источником энергии и одним эквивалентным потребителем. После упрощения электрической схемы по закону Ома расчетный ток источника питания (ток, идущий на всю электрическую цепь), а затем, используя законы Ома и Кирхгоффа, осуществляют расчет во всех остальных ветвях электрической цепи. Пример:
- = +
- = + + =
Тогда сила тока: I= = 3.2
= I* следовательно: = * =1 = * =2
Если ток, входящий в узел, разветвляется только на две ветви, то можно исключить из расчета операцию нахождения напряжения . В таком случае применяем формулу разброса.
Структура этой формулы:
= = = = =6 Ом;E=48В =12 =3 = 15
Расчет сложных электрических цепей с несколькими источниками. Метод двух узлов. Метод контурных токов.
1.4 Метод узловых потенциалов. Метод узлового напряжения (метод двух узлов)
В методе узловых потенциалов за вспомогательные расчетные величины принимают потенциалы узлов схемы. При этом потенциалом одного из узлов задаются, обычно считая его равным нулю (заземляют). Этот узел называют опорным узлом. Затем для каждого узла схемы, кроме опорного узла, составляют систему уравнений методом узловых потенциалов. По найденным потенциалам узлов находят токи ветвей по обобщенному закону Ома (закону Ома для ветви с ЭДС).
|
Отметим, что метод узловых потенциалов без предварительного преобразования схемы не применим к схемам с взаимной индукцией.
Для схем, содержащих несколько ветвей только с идеальными источниками ЭДС (без пассивных элементов), не имеющих общего узла нужно применять особые способы составления системы уравнений метода узловых потенциалов.
Для схем, содержащих несколько ветвей только с идеальными источниками ЭДС (без пассивных элементов), имеющих общий узел, этот общий узел принимают за опорный узел (заземляют). Тогда потенциалы узлов, соединенных этими идеальными источниками ЭДС без пассивных элементов с опорным узлом, равны ЭДС этих идеальных источников (+ E, если идеальный источник ЭДС направлен от опорного узла и – E в противном случае).
Метод двух узлов является частным случаем метода узловых потенциалов. Он применяется для определения токов в ветвях схемы с двумя узлами и произвольным числом параллельных активных и пассивных ветвей.
Один из методов анализа электрической цепи является метод контурных токов. Основой для него служит второй закон Кирхгофа. Главное его преимущество это уменьшение количества уравнений до m – n +1, напоминаем что m - количество ветвей, а n - количество узлов в цепи. На практике такое уменьшение существенно упрощает расчет.
Основные понятия
|
Контурный ток - это величина, которая одинакова во всех ветвях данного контура. Обычно в расчетах они обозначаются двойными индексами, например I11, I22 и тд.
Действительный ток в определенной ветви определяется алгебраической суммой контурных токов, в которую эта ветвь входит. Нахождение действительных токов и есть первоочередная задача метода контурных токов.
Контурная ЭДС - это сумма всех ЭДС входящих в этот контур.
Собственным сопротивлением контура называется сумма сопротивлений всех ветвей, которые в него входят.
Общим сопротивлением контура называется сопротивление ветви, смежное двум контурам.
Общий план составления уравнений
1 – Выбор направления действительных токов.
2 – Выбор независимых контуров и направления контурных токов в них.
3 – Определение собственных и общих сопротивлений контуров
4 – Составление уравнений и нахождение контурных токов
5 – Нахождение действительных токов
Итак, после ознакомления с теорией предлагаем приступить к практике! Рассмотрим пример.
Выполняем все поэтапно.
1. Произвольно выбираем направления действительных токов I1-I6.
2. Выделяем три контура, а затем указываем направление контурных токов I11,I22,I33. Мы выберем направление по часовой стрелке.
3. Определяем собственные сопротивления контуров. Для этого складываем сопротивления в каждом контуре.
R11=R1+R4+R5=10+25+30= 65 Ом
R22=R2+R4+R6=15+25+35 = 75 Ом
R33=R3+R5+R6=20+30+35= 85 Ом
Затем определяем общие сопротивления, общие сопротивления легко обнаружить, они принадлежат сразу нескольким контурам, например сопротивление R4 принадлежит контуру 1 и контуру 2. Поэтому для удобства обозначим такие сопротивления номерами контуров к которым они принадлежат.
|
R12=R21=R4=25 Ом
R23=R32=R6=35 Ом
R31=R13=R5=30 Ом
4. Приступаем к основному этапу – составлению системы уравнений контурных токов. В левой части уравнений входят падения напряжений в контуре, а в правой ЭДС источников данного контура.
Так как контура у нас три, следовательно, система будет состоять из трех уравнений. Для первого контура уравнение будет выглядеть следующим образом:
Ток первого контура I11, умножаем на собственное сопротивление R11 этого же контура, а затем вычитаем ток I22, помноженный на общее сопротивление первого и второго контуров R21 и ток I33, помноженный на общее сопротивление первого и третьего контура R31. Данное выражение будет равняться ЭДС E1 этого контура. Значение ЭДС берем со знаком плюс, так как направление обхода (по часовой стрелке) совпадает с направление ЭДС, в противном случае нужно было бы брать со знаком минус.
Те же действия проделываем с двумя другими контурами и в итоге получаем систему:
В полученную систему подставляем уже известные значения сопротивлений и решаем её любым известным способом.
5. Последним этапом находим действительные токи, для этого нужно записать для них выражения.
Контурный ток равен действительному току, который принадлежит только этому контуру. То есть другими словами, если ток протекает только в одном контуре, то он равен контурному.
Но, нужно учитывать направление обхода, например, в нашем случае ток I2 не совпадает с направлением, поэтому берем его со знаком минус.
Токи, протекающие через общие сопротивления определяем как алгебраическую сумму контурных, учитывая направление обхода.
Например, через резистор R4 протекает ток I4, его направление совпадает с направлением обхода первого контура и противоположно направлению второго контура. Значит, для него выражение будет выглядеть
А для остальных