Социально- экономические риски




Сторонники генной инженерии заявляют, что создаваемые с ее помощью продукты могут решить проблему мирового голода. Однако их оппоненты подчеркивают потенциальную опасность сосредоточения генетических технологий в руках частных компаний через патентование определенных жизненных форм, которые могут вытеснить традиционные сельскохозяйственные культуры и породы животных.

Перспективы генной инженерии

Особенности новых технологий могут привести к большим опасностям. Разрушающий самовоспроизводящийся объект, специально созданный и оказавшийся вне контроля, может стать средством массового поражения. Угрозой будет само знание. Однако успех в этой отрасли науки сможет поднять производительность труда и способствовать решению многих существующих проблем,; но, в то же время, создать новые разрушительные средства.

II.БИОТЕХНОЛОГИИ

Биотехнология — интеграция естественных и инженерных наук, реализующая возможности живых организмов для создания и модификации продуктов или процессов различного назначения. Она представляет собой систему приёмов использования процессов жизнедеятельности живых организмов для получения промышленным способом ценных продуктов.

История биотехнологии

Впервые термин «биотехнология» применил венгерский инженер Карл Эреки в 1917 году. Но отдельные элементы биотехнологии появились достаточно давно. Это были попытки использовать в производстве отдельные клетки (микроорганизмы) и ферменты, способствующие протеканию химических процессов. В начале XX века активно развивалась микробиологическая промышленность, были предприняты попытки использовать ферменты в текстильной промышленности. Вклад в дело практического использования достижений биохимии внёс академик А. Н. Бах.

Были разработаны рекомендации по улучшению технологий обработки биохимического сырья, совершенствованию технологий хлебопечения, производства чая и табака и т. п., а также рекомендации по повышению урожая культурных растений путём управления протекающими в них биохимическими процессами.

В производственном отношении основой биотехнологии стала микробиологическая промышленность. Микроорганизмы использовали как средство повышения интенсивности биохимических процессов и как миниатюрные синтетические фабрики, способные синтезировать внутри своих клеток сложнейшие химические соединения.

Перелом в науке был связан с открытием и началом производства антибиотиков. Первый — пенициллин — был выделен в 1940 году.

Затем были открыты и другие антибиотики. Позднее появились новые задачи: налаживание производства лекарственных веществ, продуцируемых микроорганизмами; работа над повышением уровня доступности новых лекарств. Синтезировать антибиотики химически было очень дорого и почти невозможно. Было решено использовать микроорганизмы, синтезирующие пенициллин и другие антибиотики. Так возникло важнейшее направление биотехнологии, основанное на использовании процессов микробиологического синтеза.

2. Микробиологический синтез. Развитие микробиологической промышленности, выпускающей продукты биосинтеза, позволило накопить очень важный опыт конструирования и эксплуатации нового промышленного оборудования. В настоящее время с помощью микробиологического синтеза производят антибиотики, ферменты, аминокислоты, и другие. Сейчас химическая промышленность для производства горючего, ацетона и других веществ использует как исходное сырьё нефть, газ и уголь. Но их запасы не безграничны.

А в микробиологической промышленности для производства химических продуктов могут использоваться неограниченные массы органического сырья, отходов, образующихся в сельском хозяйстве, лесной промышленности, очистных сооружениях городов и т. п. Разработка и внедрение эффективных технологий такого производства — задача, имеющая большое значение для экономики народного хозяйства.

Важным направлением биотехнологии является производство и использование так называемых иммобилизованных ферментов. Эти ферменты обеспечивают осуществление химических реакций без высоких температур и давлений и ускоряют их в миллионы и миллиарды раз. При этом каждый фермент катализирует только одну определённую реакцию. Биологические катализаторы можно использовать также не извлекая их из живых организмов, прямо в бактериальных клетках. Этот способ - основа всякого микробиологического производства.

Для того чтобы стабилизировать (иммобилизовать) ферменты, сделать их пригодными для многократного промышленного использования, их присоединяют с помощью прочных химических связей к нерастворимым или растворимым носителям — ионообменным полимерам, пористому стеклу, полисахаридам и т. п. В результате ферменты становятся устойчивыми и могут быть использованы многократно. Разработка способа повышения устойчивости ферментов значительно расширяет возможности их использования. С помощью ферментов можно, например, получать сахар из растительных отходов.

Плазмиды

Наибольшие успехи были достигнуты в области изменения генетического аппарата бактерий. Вводить новые гены в геном бактерии научились с помощью кольцеобразных молекул ДНК — плазмид, присутствующих в бактериальных клетках.

В них «вклеивают» гены, и такие гибридные плазмиды добавляют к культуре бактерий, например кишечной палочки. Некоторые из этих бактерий поглощают плазмиды целиком. Затем она начинает реплицироваться в клетке, воспроизводя в клетке кишечной палочки десятки своих копий, которые обеспечивают синтез новых белков.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-12-28 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: