Измерение электрических величин: токов, напряжений, мощности.




1. Методы измерений. На практикe применяют различные методы измерения электрических величин. Наибольшее распространение в электроизмерительной технике получил метод непосредственной оценки. При использовании этого метода числовое значение измеряемой величины определяют непосредственно по показанию прибора, шкала которого отрегулирована в единицах измеряемой величины. К подобным измерениям относят определение тока по показанию амперметра, напряжения по показанию вольтметра, мощности по показанию ваттметра, сопротивления по показанию омметра, cos φ по показанию фазометра и т. д.

В некоторых случаях электрическую величину приходится определять косвенно - по данным измерений других электрических величин. Так, значение cos φ находят по измеренным величинам мощности P, напряжения U и тока I, значение сопротивления - по измеренным величинам U и I в т. д. Это - косвенный метод измерения.

В измерительной технике и особенно в автоматических устройствах широко используется метод сравнения. В основе этого метода лежит сравнение измеряемой величины с известной идентичной физической величиной. Из области неэлектрических измерений можно, например, указать известный способ определения при помощи чашечных весов массы (веса) какого-либо предмета путем сравнения его с массой (весом) гирь в момент равновесия.

В электроизмерительной технике различают две разновидности метода сравнения: мостовой и компенсационный. Примером мостового метода является измерение сопротивления при помощи четырехплечной мостовой схемы. Примером компенсационного метода может служить измерение напряжения путем сравнения с известной ЭДС нормального элемента. Методы сравнения отличаются большой точностью, но техника этих измерений сложнее, чем измерений методом непосредственной оценки.

2.Измерение тока. Для измерения тока в какой-либо цепи последовательно в цепь включают амперметр. В установках постоянного тока для этой цели применяются главным образом приборы магнитоэлектрической системы и реже — приборы электромагнитной системы. В установках переменного тока используются преимущественно амперметры электромагнитной системы. Для уменьшения погрешности измерения необходимо, чтобы сопротивление амперметра (или полное сопротивление амперметра и шунта) было на два порядка меньше сопротивления любого элемента измеряемой цепи.

 

Для расширения предела измерения амперметра (в k раз) в цепях постоянного тока служат шунты-резисторы, включаемые параллельно амперметру (рис. 7.10, а).

 

Рис. 7.10. Схемы присоединения шунта к амперметру (а) и добавочного резистора к вольтметру (б)

где Imax — наибольшее значение тока в контролируемой цепи (предел измерения тока амперметром при наличии шунта); Iа,н — предельное (номинальное) значение тока прибора при отсутствии шунта.

Отсюда:

Значение тока I в контролируемой цепи при существующей нагрузке определяется из соотношения:

где Iа— показание амперметра.

Шкалу амперметра часто градуируют с учетом включенного шунта; тогда значение измеряемого тока I отсчитывается непосредственно по шкале прибора.

Измерение напряжения. Для измерения значения напряжения на каком-либо элементе электрической цепи (генераторе, трансформаторе, нагрузке) к выводам элемента присоединяют вольтметр. Для уменьшения погрешности измерения необходимо, чтобы сопротивление вольтметра (или общее сопротивление вольтметра и добавочного резистора) было на два порядка больше сопротивления любого элемента измеряемой цепи.

Рис. 7.11. Схема компенсатора

Для расширения предела измерения вольтметра (в kраз) в цепях напряжением до 500 В обычно применяют добавочные резисторы, включаемые последовательно с обмоткой вольтметра (рис. 7,10, б).

Сопротивление добавочного резистора, rд определяют из соотношения

,

где Umax — наибольшее значение измеряемого напряжения (предел измерения напряжения вольтметром при наличии добавочного резистора); Uв,н — предельное (номинальное) значение напряжения прибора при отсутствии добавочного резистора.

Отсюда:

Значение фактически измеряемого напряжения U определяется из соотношения:

где Uв— показание вольтметра.

 

Шкалу вольтметра градуируют с учетом включенного добавочного резистора.

В цепях переменного тока высокого напряжения для расширения пределов измерения вольтметров применяют трансформаторы напряжения.

Компенсационный метод измерения метод измерений, основанный на компенсации (уравнивании) измеряемого напряжения или эдс напряжением, создаваемым на известном сопротивлении током от вспомогательного источника. К. м. и. применяют не только для измерений электрических величин (эдс, напряжений, токов, сопротивления); он широко применяется и для измерения др. физических величин (механических, световых, температуры и т.д.), которые обычно предварительно преобразуют в электрические величины.

К. м. и. является одним из вариантов метода сравнения с мерой, в котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля (добиваются нулевого показания измерительного прибора). К. м. и. отличается высокой точностью. Она зависит от чувствительности нулевого прибора контролирующего осуществление компенсации, и от точности определения величины, компенсирующей измеряемую величину.

К. м. и. электрического напряжения в цепи постоянного тока состоит в следующем. Измеряемое напряжение Ux (см. рис.) компенсируется падением напряжения, создаваемым на известном сопротивлении r током от вспомогательного источника Uвсп (рабочим током lp). Гальванометр Г (нулевой прибор) включается в цепь сравниваемых напряжений перемещением переключателя (П на рис.) в правое положение. Когда напряжения скомпенсированы, ток в гальванометре, а следовательно, и в цепи измеряемого напряжения Ux отсутствует. Это является большим преимуществом К. м. и. перед другими методами, так как он позволяет измерять полную эдс источника Ux и, кроме того, на результаты измерений этим методом не влияет сопротивление соединительных проводов и гальванометра. Рабочий ток устанавливают по нормальному элементу EN с известной эдс, компенсируя её падением напряжения на сопротивлении R (переключатель П — в левом положении). Значение напряжения Ux находят по формуле Ux = EN∙r/R, где r — сопротивление, падение напряжения на котором компенсирует Ux.

При измерении компенсационным методом силы тока Ix этот ток пропускают по известному сопротивлению R0 и измеряют падение напряжения на нём lxR0. Сопротивление R0 включают вместо показанного на рис. источника напряжения Ux. Для измерения мощности необходимо поочередно измерить напряжение и силу тока. Для измерения сопротивления его включают во вспомогательную цепь последовательно с известным сопротивлением и сравнивают падения напряжения на них. Электроизмерительные приборы, основанные на К. м. и., называются Потенциометрами или электроизмерительными компенсаторами. К. м. и. применим также для измерений величин переменного тока, хотя и с меньшей точностью. К. м. и. широко применяется в технике в целях автоматического контроля, регулирования, управления.

Схема компенсатора эдс с нормальным элементом: Uвсп — источник вспомогательного напряжения; R — калиброванное сопротивление; rpeг — регулировочное сопротивление; EN — нормальный элемент; Ip — рабочий ток; Г — гальванометр; П — переключатель; Ux — измеряемое напряжение.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: