Измерительные трансформаторы тока, напряжения, автотрансформаторы и транформаторы специального назначения.




Используются в цепях переменного тока для изменения значения тока и напряжения в заданное число раз с определенной точностью.

Устройство измерительных трансформаторов аналогично обычным силовым трансформаторам с той лишь разнице, что их вторичная обмотка может быть двухслойной: одна катушка используется для целей измерения, а вторая (низкой точности) – для цепей автоматической защиты. Во вторичную цепь трансформатора могут включаться не только приборы контроля (вольтметры, ваттметры, счетчики энергии и т.п.), но и элементы автоматики (элементы защиты и управления). При возникновении аварийных ситуаций в линии ток может увеличиться в десять раз, при этом трансформатор тока существенно перегружается, его мощность становится во много раз больше рабочей, что приводит к насыщению магнитопровода, снижению точности измерений. В таком режиме трансформаторы тока работают не в нормальном режиме, и для них при этом нормируется уровень 10% точности.

Измерительные трансформаторы имеют следующие эксплуатационные характеристики:

· для трансформаторов напряжения (ТН): рабочую частоту (50 Гц), номинальное напряжение (от 0,38 кВ до 750 кВ), номинальное вторичное напряжение (100 В); класс точности (0,05…3,0),

· для трансформаторов тока (ТТ): номинальный первичный ток (от 1 А до 40 кА); номинальный вторичный ток (1; 2; 2,5; 5 А); номинальная нагрузка вторичной цепи (2,5; 5; 10; 25; 30; 40; 60; 75; 100 Вт); класс точности (0,2…10,0).

Измерительные приборы и элементы защиты электрических цепей выполняют на токи и напряжения вторичных обмоток измерительных трансформаторов. Причем, вторичная обмотка измерительных трансформаторов обязательно должна быть заземлена.

Рис. 3.4 Схема включения трансформатора тока.

Для трансформаторов тока важными метрологическими характеристиками являются: номинальное напряжение, номинальный первичный и вторичный ток, номинальный коэффициент трансформации, токовая погрешность, угловая погрешность, полная погрешность (характеризует относительный намагничивающий ток), номинальная нагрузка, номинальная предельная кратность первичного и вторичного тока.

Через трансформаторы тока в аварийных ситуациях могут протекать токи короткого замыкания, многократно превышающие номинальный ток, поэтому используют понятиядинамической и термической стойкости (кратность токов). Наиболее уязвимым элементом измерительных трансформаторов является первичная обмотка, так как в аварийных ситуациях вторичная обмотка работает в режиме насыщения магнитопровода.

Трансформаторы тока (ТТ) бывают: шинные, кабельные, проходные. В одновитковом трансформаторе тока первичная обмотка может быть выполнена в виде стержня или пакета шин.

Примером такого исполнения является одновитковый проходной трансформатор тока с литой изоляцией (на 10 кВ).

Применение литой эпоксидной изоляции позволяет сильно упростить конструкцию и технологию производства трансформаторов. Достоинством одновиткового исполнения ТТ является его высокая электродинамическая стойкость. При расчете измерительных цепей необходимо производить учет сопротивления проводов измерительной схемы. Трансформаторы тока

Измерительные трансформаторы напряжения (ТН) служат для приведения напряжения к стандартному значению (100 В), на которое рассчитаны вторичные приборы. Для обеспечения безопасности обслуживающего персонала вторичная обмотка трансформатора заземляется. Рис. 3.6 Схемы включения трансформаторов напряжения в трехфазных сетях с использованием двух (а) и трех (б) однофазных трансформаторов.

Основными параметрами ТН являются: номинальные значения напряжения на обмотках, коэффициента трансформации, погрешности по напряжению, мощность трансформатора и вторичная нагрузка.

На погрешность трансформатора влияет коэффициент мощности нагрузки (cosφ). Характер нагрузки оказывает влияние также и на угловую погрешность.

До напряжений 35 кВ конструкция ТН сходна с конструкцией силовых трансформаторов. Индукция в сердечнике ТН значительно меньше, чем у силовых трансформаторов, это позволяет снизить погрешность измерений.

 

25. машины постоянного тока. Конструкция принцип действия в режимах генератора и двигателя. ЭДС якоря реакция якоря. Электромагнитный момент

Машины постоянного тока широко используются в качестве источника постоянного тока, либо преобразователя электрической мощности в механическую. Первая машина работает в режиме генератора, вторая в режиме двигателя. Двигатели постоянного тока широко используются в регулируемом электроприводе.

Работа этих машин основана на двух законах:

1. Закон электромагнитной индукции

,где

- индукция,

- длина проводника,

- линейная скорость,

2. Закон электромагнитных сил:

,где

- сила воздействия на проводник

- ток в проводнике,

ЭДС, наводимая в проводнике, получается за счет того, что проводник пересекает магнитное поле со скоростью .

Поэтому в реальной машине должно быть две основные части:

первая часть – создает магнитный поток,

вторая часть – в которой индуктируется ЭДС.

Первая часть в машине постоянного тока неподвижна. К станине (1) крепятся шматованные полюса (2) на которых располагается обмотка возбуждения (3) (рис. 1).

Обмотка возбуждения создает магнитный поток при протекании по ней постоянного тока.

.

Вторая часть – якорь. Якорь вращается. Представляет собой цилиндр набранный из листов электротехнической стали (4).В наружной части якоря расположены пазы, где укладываются секции обмотки (5). Каждая секция соединяется с пластинами коллектора (6). Коллектор служит для выпрямления переменной ЭДС в постоянную величину (режим генератора). Эта ЭДС снимается с помощью щеток (7), рис. 2.

Рассмотрим принцип выпрямления:

(рис. 3). Виток (8) подсоединен к двум

кольцам и вращается в магнитном поле. При вращении витка в проводниках (1,2) будет наводиться переменная ЭДС (под северным полюсом одно направление, а под южным другое).Снятое со щеток напряжение будет иметь синусоидальный характер (рис. 3).

Если кольцо разрезать пополам и подсоединить к ним проводники (1,2) то это уже будет элементарный коллектор – выпрямитель, (рис. 4).Независимо от того,

какое полукольцо с проводником (1) или (2) подойдет к нижней щетке, направление ЭДС, снимаемое нижней щеткой, будет одним и тем же. Для внешней цепи плюс будет на нижней щетке, а минус на верхней. При одном витке выпрямленная ЭДС будет иметь большую пульсацию. При увеличении числа

Пульсация ЭДС характеризуется величиной – .

и зависит от числа коллекторных пластин на полюс. При одном витке (одной коллекторной пластине на полюс) пульсация составляет .

 

26. Схемы возбуждения машин постоянного тока. Уравнения электрического состояния двигателя и генератора.

Схемой возбуждения называется схема питания обмотки индуктора. Схема возбуждения определяет основные свойства и характеристики машины.

По схеме возбуждения машины постоянного тока делятся на машины снезависимым возбуждением и машины с самовозбуждением.

В машине с независимым возбуждением обмотка индуктора питается от постороннего источника постоянного тока. Схема с независимым возбуждением (с электрически не связанными цепями якоря и индуктора) применяется относительно редко. Обычно у машин постоянного тока, как генераторов, так и двигателей, цепи якоря и индуктора электрически связаны. У генераторов при этом осуществляется самовозбуждение: обмотка индуктора питается током якоря той же машины.

В зависимости от схемы, по которой электрически связываются обмотки якоря и индуктора, различают три типа машин постоянного тока,имеющие в генераторном и в двигательном режиме существенно разные характеристики и соответственно разные области применения: машины с параллельным возбуждением (шунтовые); машины с последовательным возбуждением (сериесные) и машины со смешанным возбуждением (компаундные).

В машине параллельного возбуждения обмотка возбуждения соединяется параллельно с якорем (по отношению к внешней цепи), а в машине последовательного возбуждения – последовательно.Машина смешанного возбуждения имеет параллельную и последовательную обмотки возбуждения, причем обычно основной является параллельная обмотка.

Самовозбуждение в генераторах постоянного тока основано на использовании явления гистерезиса в стали полюсов индуктора.

 

Схема независимого возбуждения

 

Схема параллельного возбуждения

 

 

Схема последовательного возбуждения

 

27. пуск двигателя постоянного тока. Регулирование частоты вращения

Как и в случае с асинхронными двигателями, пуск двигателей постоянного тока осложнен возникающими при пуске большими значениями пусковых токов и моментов. Но в отличие от асинхронных двигателей, в ДПТ пусковые токи превышают номинальные в 10-40 раз. Такое громадное превышение может привести к выводу двигателя из строя, повреждению связанных с двигателем механизмов и большим просадкам напряжения в сети, что может сказаться на других потребителях. Поэтому пусковые токи стараются ограничить до значений (1,5…2) Iн.

Для маломощных двигателей (до 1 кВт) при условии отсутствия нагрузки на валу, можно применить прямой пуск, то есть непосредственно от сети. Это связано с тем что масса движущихся частей двигателя не велика, а сопротивление обмотки относительно большое. При прямом пуске таких двигателей пусковые токи не превышают значений (3…5) Iн, что для таких двигателей не критично.

Когда двигатель работает при постоянном напряжении и сопротивлении обмотки якоря, ток в якоре можно найти с помощью формулы

В этой формуле U – напряжение питающей сети, Епр – противоЭДС, ∑r – сопротивление обмоток якоря. ПротивоЭДС Епр возникает при вращении якоря в магнитном поле статора, при этом в двигателе, она направлена против якоря. Но когда якорь не движется, Епр не возникает, а значит, выражение для тока примет следующий вид

Это и есть выражение для определения пускового тока.

Глядя на формулу можно прийти к выводу, что снижения пускового тока возможно либо снижением напряжения, либо увеличением сопротивления якорной обмотки.

Пуск двигателя снижением напряжения применяется, если питание двигателя организовано от независимого источника энергии, который можно регулировать. На практике такой пуск используется для двигателей средней и большой мощности.

Мы рассмотрим более подробно способ пуска двигателя постоянного тока с помощью введения дополнительного сопротивления в цепь якоря. При этом пусковой ток будет равен

Таким образом, можно добиться величины пускового тока, в нужном диапазоне, безопасном для двигателя. Добавочное сопротивление может быть как в виде реостата, так и в виде нескольких резисторов. Это нужно для того, чтобы в процессе запуска двигателя, менять сопротивление в якорной цепи.

Следует знать, что с дополнительным сопротивлением в обмотке якоря двигатель работает не на естественной, а на более мягкой искусственной характеристике, которая не подходит для нормальной работы двигателя.

Пуск двигателя осуществляется в несколько ступеней. После некоторого разгона двигателя, Епр ограничит ток, а следовательно пусковой момент, чтобы поддержать его на прежнем уровне, нужно уменьшить сопротивление, то есть переключить реостат или шунтировать резистор.

Двигатели постоянного тока классифицируются в зависимости от способа соединения обмотки возбуждения с якорем:

1. Двигатель параллельного возбуждения (если напряжение обмотки возбуждения иное, то такой двигатель называется двигателем независимого возбуждения).

2. Двигатель последовательного возбуждения.

3. Двигатель смешанного возбуждения.

 

28. сравнительная оценка двигателей постоянного тока с различными схемами возбуждения. Области применения механических характеристик.

Двигатели независимого и параллельного возбуждения имеют «жесткую» естественную механическую характеристику, вследствие чего их применяют, когда требуется незначительное изменение частоты вращения при изменении нагрузки. Следует заметить, что многие из указанных двигателей снабжаются дополнительно последовательной обмоткой возбуждения, небольшая МДС которой направлена встречно по отношению к основной обмотке возбуждения. Наличие такой обмотки приводит к некоторому увеличению «жесткости» естественной механической характеристики.

Двигатели независимого и параллельного возбуждения применяются также в тех случаях, когда внешний момент может быть как тормозящим, так и движущим. В этом случае двигатель будет автоматически переходить из двигательного режима работы в тормозной генераторный или наоборот.

Двигатели последовательного возбуждения имеют «мягкую» естественную механическую характеристику, которая в некоторых случаях (например, на кранах, на электротранспорте) оказывается наиболее подходящей: при перемещении легких грузов частота вращения двигателя автоматически значительно повышается, что приводит к повышению производительности механизмов. Особенностью двигателей последовательного возбуждения является невозможность их работы вхолостую.

Двигатели смешанного возбуждения имеют более «мягкую» естественную характеристику, чем двигатели параллельного (или независи­мого) возбуждения, но более «жесткую», чем двигатели последовательного возбуждения. В отличие от двигателей последовательного возбуждения они могут работать вхолостую.

Двигатели смешанного и особенно последовательного возбуждения допускают большую кратковременную перегрузку по моменту по сравнению с двигателями параллельного возбуждения. Это позволяет производить их пуск и торможение в более короткое время. А при одинаковом времени они оказываются меньше загруженными по току.

Благодаря возможности использования потенциометрических схем включения все двигатели постоянною тока имеют лучшие свойства в отношении регулирования частоты вращения по сравнению с наиболее распространенными асинхронными двигателями (см. гл. 10). Когда потенциометрические схемы включения не обеспечивают необходимого диапазона регулирования частоты вращения, для двигателей с независимым возбуждением используются различные системы с регулируемым напряжением для питания обмотки якоря.

В справочной литературе приводятся следующие технические данные двигателей постоянного тока: тип двигателя; номинальная (механическая) мощность, кВт; номинальное напряжение, В; номинальная частота вращения, об/мин; номинальный ток, А; номинальный КПД; момент инерции ротора, кг•м2.

Если обмотка возбуждения выполнена на напряжение, отличающееся от напряжения обмотки якоря, дополнительно указываются номинальные напряжения и ток обмотки возбуждения.

Кроме перечисленных сведений указываются иногда и ряд других, например способ возбуждения, режим работы (см. гл. 12), допустимые кратковременные перегрузки и т. д.

 

29. генераторы постоянного тока с самовозбуждением: принцип действия, основные характеристики, потери мощности и КПД, область применения.

Генераторы с самовозбуждением делят на три типа:
а) с параллельным возбуждением; б) с последовательным возбуждением; в) со смешанным возбуждением.

Генератор с параллельным возбуждением имеет такую же конструкцию обмотки возбуждения, как и генератор с независимым возбуждением. Поскольку Iя = Iн + Iв, то ток возбуждения является частью тока якоря и составляет 1¸5% Iя.ном. Характеристика хо­лостого хода E = f(Iв) в относительных единицах практически одинакова у всех типов генераторов.

Рассмотрим процесс самовозбуждения машины при наличии остаточной намагниченности Фост основных полюсов в режиме холостого хода. При вращении якоря с частотой nном в слабом остаточном магнитном поле Фост в якоре наводится небольшая ЭДС Еост. Так как обмотка возбуждения и якорь образуют замкнутый контур, то под действием Еоств ОВ появится небольшой ток Iв, который создаст небольшой поток возбуждения Фв.

При правильной полярности включения ОВ произойдет суммирование потоков Фост + Фв = Ф. Усиленный поток Ф увеличивает ЭДС Е, которая увеличивает Iв и т. д. Процесс самовозбуждения нарастает. Ограничение роста Ф, Е, Iв происходит из-за насыщения магнитной цепи. Процесс самовозбуждения можно проиллюстрировать, добавив к характеристике холостого хода прямую 2, построенную по уравнению E = (Rя + Rр + Rв)Iв »(Rр + Rв)Iв. Ее угол наклона можно регулировать изменением сопротивления Rррегулировочного реостата. При пуске Rр выведено, т. е. Rр = 0. Тогда прямая 2 имеет минимальный угол наклона, определяемый сопротивлением Rв обмотки возбуждения. Процесс самовозбуждения показан стрелками: вначале из точки Еост – горизонтальный ход до прямой 2, далее вертикальный ход до характеристики 1, затем опять горизонтальный ход до прямой 2 и т. д. Процесс оканчивается в точке пересечения кривой 1 и прямой 2 при Е = Еmах. Это устойчивое возбуждение. Для снижения Еmах до Еном вводят реостат Rр. При этом угол a увеличивается и прямая 2 занимает положение 3. Увеличение Rр, при котором прямая 3 занимает положение 4, сделает работу генератора неустойчивой и Е может упасть до Еост. Сопротивление цепи возбуждения Rр.кр + Rв, определяющее угол aкр, называют критическим. Самовозбуждение при таком и большем сопротивлении невозможно. Итак, для самовозбуждения генератора требуются три условия: наличие остаточного потока намагничивания Фост; согласованность потоков ФвиФост; сопротивление цепи возбуждения меньше критического, а п = пном.

Обычно в магнитной системе машины имеется остаточная намагниченность из-за явления гистерезиса. Однако возможны случаи полного размагничивания полюсов. Тогда начальное намагничивание создают, пропуская через обмотку возбуждения ток от внешнего источника. Внешняя характеристика генератора имеет вид кривой 1.

 

30. вращающееся магнитное поле, условия получения премечание

Условия получения:

1. наличие не менее двух обмоток;

2. токи в обмотках должны отличаться по фазе

3. оси обмоток должны быть смещены в пространстве.

В трёхфазной машине при одной паре полюсов (р=1) оси обмоток должны быть смещены в пространстве на угол 120°, при двух парах полюсов (р=2) оси обмоток должны быть смещены в пространстве на угол 60° и т.д.

Рассмотрим магнитное поле, которое создаётся с помощью трёхфазной обмотки, имеющей одну пару полюсов (р=1) (рис. 5.7). Оси обмоток фаз смещены в пространстве на угол 120° и создаваемые ими магнитные индукции отдельных фаз (BA, BB, BC) смещены в пространстве тоже на угол 120°.

Магнитные индукции полей, создаваемые каждой фазой, как и напряжения, подведённые к этим фазам, являются синусоидальными и отличаются по фазе на угол 120°.

Приняв начальную фазу индукции в фазе А (φA) равной нулю, можно записать:

Магнитная индукция результирующего магнитного поля определяется векторной суммой этих трёх магнитных индукций.

.

Найдём результирующую магнитную индукцию (рис. 2.8) с помощью векторных диаграмм, построив их для нескольких моментов времени.

а) При t=0 б) При в) При

Асинхронная машина может работать в режимах двигателя, генератора и электромагнитного тормоза.

Режим двигателя

Этот режим служит для преобразования потребляемой из сети электрической энергии в механическую. Пусть обмотка статора создаёт магнитное поле, вращающееся с частотой n0 в указанном направлении (рис. 5.9). Это поле будет наводить согласно закону электромагнитной индукции в обмотке ротора ЭДС. Направление ЭДС определяется по правилу правой руки и показано на рисунке (силовые линии должны входить в ладонь, а большой палец нужно направить по направлению движения проводника, т.е. ротора, относительно магнитного поля). В обмотке ротора появится ток, направление которого примем совпадающим с направлением ЭДС.

В результате взаимодействия обмотки ротора с током и вращающегося магнитного поля возникает электромагнитная сила F. Направление силы определяется по правилу левой руки (силовые линии должны входить в ладонь, четыре пальца – по направлению тока в обмотке ротора). В данном режиме (рис. 5.9) электромагнитная сила создаст вращающий момент, под действием которого ротор начнёт вращаться с частотой n.

Направление вращения ротора совпадает с направлением вращения магнитного поля.

Чтобы изменить направление вращения ротора (реверсировать двигатель), нужно изменить направление вращения магнитного поля.

Для реверса двигателя нужно изменить порядок чередования фаз подведённого напряжения, т.е. переключить две фазы.

 

31. Асинхронные двигатели(АД). Устройство принцип действия трехфазного АД

Асинхронный двигатель – это асинхронная электрическая машина переменного тока в двигательном режиме, у которой частота вращения магнитного поля статора больше чем частота вращения ротора.

Принцип работы берет основу из создания вращающегося магнитного поля статора, о чем подробнее вы можете почитать из указанной ссылки.

Асинхронные двигатели – одни из самых распространённых электрическим машин, и зачастую являются одним из основных преобразователей электрической энергии в механическую энергию. Самым большим достоинством является отсутствие контакта между подвижными и подвижными частями ротора, я имею ввиду электрический контакт, к примеру, в двигателях постоянного тока через щетки и коллектор. Однако это справедливо только к АД с короткозамкнутым ротором, в асинхронных двигателях с фазным ротором, этот контакт имеет место, но об этом чуть позже.

Конструкция асинхронного двигателя.

Рассмотрим конструкцию, примером послужит асинхронный двигатель с короткозамкнутым ротором, но так же существует фазный тип ротора. Асинхронный двигатель состоит из статора и ротора между которыми воздушный зазор. Статор и ротор в свою очередь еще имеют так называемые активные части – обмотка возбуждения (отдельно статорная и отдельно роторная) и магнитопровод (сердечник). Все остальные детали АД, такие как: вал, подшипники, вентилятор, корпус, и т.п. – чисто конструктивные детали, обеспечивающие защиту от окружающей среды, прочность, охлаждение, возможность совершать вращение. Статор представляет собой трёх (или много)-фазную обмотку, проводники которой равномерно уложены в пазах по всей окружности, с угловым расстоянием в 120 эл. градусов. Концы обмотки статора обычно соединяют по схемам «звезда» или «треугольник», и подключаются к сети питающего напряжения. Магнитопровод выполняется из электротехнической шихтованной (набрано из тонких листов) стали.

Как я уже сказал ранее, в асинхронном двигателе существует всего 2 типа роторов: это фазный тип ротора, и короткозамкнутый. Магнитопровод ротора также выполнен из шихтованной электротехнической стали. Короткозамкнутый ротор имеет вид так называемой «беличьей клетки» из-за схожести своей конструкции на эту клетку. Состоит эта клетка из медных стержней, которые накоротко замкнуты кольцами. Стержни непосредственно вставлены в пазы сердечника ротора. Для улучшения пусковых характеристики АД с таким типом ротора, применяют специальную форму паза, это дает возможность использования эффекта вытеснения тока, что влияет на увеличение активного сопротивления роторной обмотки при пуске (больших скольжения). Сами по себе, АД с короткозамкнутым ротором имеют малый пусковой момент, что пагубно сказывается на области их использования. Наибольшее распространение они нашли в системах которые не требуют больших пусковых моментов. Однако, данный тип ротора отличается тем, что на его обслуживание тратится меньше средств чем на обслуживание двигателя с фазным ротором, вследствие отсутствия физического контакта в типе ротора беличья клетка. Фазный ротор состоит из трёхфазной обмотки, зачастую соединенной по схеме «звезда», и выведенную на контактные кольца, которые вращаются вместе с валом. Щетки выполнены из графита. Фазный ротор дает много преимуществ, таких как пуск звезда-треугольник, регулирование частоты вращения изменением сопротивления ротора.

Режимы работы

Подробнее рассмотреть механическую характеристику в моей ранней статье, а так же способы пуска с реверсом.

К тормозным режимам стоит отнести несколько основных:

– торможение противовключением;

– торможение однофазным переменным током и конденсаторное торможение;

– динамическое торможение.

Асинхронный двигатель имеет низкую стоимость, надёжен, и очень дешевый в обслуживании, особенно если он выполнен с короткозамкнутым ротором.

 

32. типы асинхр двигателей. Области применения. Способы пуска АД с короткозамкнутым и фазным ротором.

Электродвигатели переменного ток а, использующие для своей работы вращающееся магнитное поле статора, являются в настоящее время весьма распространенными электрическими машинами. Те из них, у которых частота вращения ротора отличается от частоты вращения магнитного поля статора, называются асинхронными двигателями.

Очень широко применяются в различных отраслях хозяйства и производства линейные асинхронные двигатели в силу простоты их изготовления и высокой надежности. Между тем, можно выделить четыре основных типа асинхронных двигателей:

однофазный асинхронный двигатель с короткозамкнутым ротором;

двухфазный асинхронный двигатель с короткозамкнутым ротором;

трехфазный асинхронный двигатель с короткозамкнутым ротором;

трехфазный асинхронный двигатель с фазным ротором.

При пуске вначале включается выключатель Q1. Пуск АД осуществляется в режиме ограничения тока статора за счет пускового реактора LR или пускового резистора R. После уменьшения пускового тока в процессе разгона двигателя включается выключатель Q2.

Торможение АД с короткозамкнутым ротором осуществляют в режиме свободного выбега (отключения от сети и остановки под действием момента сопротивления холостого хода) или в режиме динамического торможения. Режим динамического торможения реализуют либо подключением двух фаз АД к сети постоянного тока (с возбуждением постоянным током), либо подключением статора АД к батарее конденсаторов, включенных в звезду или треугольник (в режиме самовозбуждения двигателя). Недостатком второго способа торможения является возникновение тормозного эффекта внутри достаточно узкого диапазона скоростей и необходимость в использовании конденсаторов большой емкости. Достоинство этого способа – реализация режима компенсации реактивной мощности питающей сети в процессе динамического торможения.

Реверс АД осуществляют в режиме динамического торможения до нулевой скорости или, что чаще, с использованием режима противовключения.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: