Спонтанный и индуцированный мутагенез.




По месту возникновения

1. генеративные (происходят в половых клетках);

2. соматические (происходят в соматических клетках)

  1. По способу возникновения
  1. спонтанные (происходят в природе постоянно, но с небольшой частотой);
  2. индуцированные (возникают под воздействием мутагенов)
  1. По влиянию на жизнеспособность особей
  1. летальны (вызывают гибель организма);
  2. вредные (снижают жизнеспособность организма. Выживающие особи имеют отклонение от нормы);
  3. нейтральные (не изменяют вероятность выживания особи или ее потомства при определенных условиях внешней среды);
  4. полезные (увеличивают жизнеспособность особей на 10-15%. Мутации поддерживаются естественным отбором. Возникают новые приспособления к окружающей среде)
  1. По характеру проявления
  1. гипоморфные – мутантные аллели действуют в том же направлении, что и нормальный аллель, но дают ослабленный эффект. Например, окраска глаз у дрозофил при мутациях значительно бледнее естественной);
  2. аморфные – мутантные аллели неактивны в отношении нормального аллеля. Например, ген альбинизма полностью тормозит образование пигмента у животных);
  3. антиморфные – мутантные аллели оказывают противоположное действие нормальному аллелю. Например, исходный аллель дает красную окраску, а мутантный – бурый цвет;
  4. неоморфные – действие мутантных аллелей совершенно отлично от действия нормального аллеля. Например, образование ноги на голове дрозофилы вместо антенн);
  1. По фенотипическому проявлению
  1. морфологические – изменения в строении и свойствах органов, тканей или клеток. Например, коротконогость у овец;
  2. физиологические – изменения физиологических процессов. Например, молочность у животных;
  3. биохимические - изменение синтеза определенных химических веществ в организме. Например, мутации микроорганизмов;
  4. поведенческие. Например, изменение рисунка или фигур брачного танца у дрозофил, что приводит к «непониманию» партнерами и не оставлению потомства.

№11. Свойства мутаций (основные положения мутационной теории):

1. Возникают внезапно, скачкообразно, без всяких переходов, не образуют непрерывных рядов (не группируются вокруг среднего значения признака).

2. Передаются по наследству.

3. Ненаправлены, т.е. мутировать может любая часть генотипа, что приводит к изменению признаков в разных направлениях.

4. Редкие события (частота мутаций зависит от числа генов: чем больше генов, тем выше частота мутаций) – 1 на 100 000-1 000 000.

5. Затрагивают в основном рецессивные гены (у гетерозигот находятся в скрытом состоянии, образуя резерв наследственной изменчивости).

Одни и те же мутации могут возникать повторно

Мутагены – факторы, вызывающие мутации. Подразделяются на три категории:

  1. физические (радиация, электромагнитное излучение, давление, температура и т.д.).
  2. химические (соли тяжелых металлов, пестициды, фенолы, спирты, ферменты, наркотические вещества, лекарственные препараты, пищевые консерванты и т.д.)
  3. биологические (вирусы, паразитные агенты, бактерии).

№12. Генные мутации

Генные (точечные) мутации изменяют последовательность нуклеотидов в гене, то есть структуру самого гена.

По характеру действия генные мутации могут быть доминант­ными или рецессивными. Чаще мутантный ген обладает рецессив­ным эффектом. Нормальный аллель подавляет при этом дейст­вие измененного гена. По характеру влияния мутантных генов на контроль биосинтеза белков и ферментов выделяют пять типов мутаций: гипоморфные, гиперморфные, антиморфные, неоморф-ные и аморфные.

Если ген мутирует в рецессивное состояние, то для мутантного аллеля чаще всего характерно уменьшение количества того же самого биохимического продукта, синтез которого определяется исходным доминантным аллелем данного гена. Такие мутации называют гипоморфными. При гиперморфных генных мутациях в отличие от гипоморфных количество биохимического продукта, синтезируемого под контролем данного гена, не уменьшается, а увеличивается. К антиморфным генным мутациям относятся му­тации, при которых мутантный аллель вызывает образование продукта, тормозящего синтез или действие продукта исходного аллеля этого гена. Неоморфные генные мутации характеризуются тем, что мутантный аллель определяет синтез в организме биохи­мического продукта, отличающегося от продукта, специфичного для исходного немутантного аллеля и не взаимодействующего с этим продуктом. Иногда в организме в результате данной мута­ции перестает вырабатываться продукт, характерный для данного гена, т. е. ген полностью инактивируется. Такая мутация называ­ется аморфной.

По причинам возникновения различают спонтанные и индуцированные мутации.

Спонтанные (самопроизвольные) мутации возникают без видимых причин. Эти мутации иногда рассматривают как ошибки трех Р: процессов репликации, репарации и рекомбинации ДНК. Это означает, что процесс возникновения новых мутаций находится под генетическим контролем организма. Например, известны мутации, которые повышают или понижают частоту других мутаций; следовательно, существуют гены-мутаторы и гены-антимутаторы.В то же время, частота спонтанных мутаций зависит и от состояния клетки (организма). Например, в условиях стресса частота мутаций может повышаться.

Индуцированные мутации возникают под действием мутагенов.

Мутагены – это разнообразные факторы, которые повышают частоту мутаций.

Впервые индуцированные мутации были получены отечественными генетиками Г.А. Надсоном и Г.С. Филипповым в 1925 г. при облучении дрожжей излучением радия.

Различают несколько классов мутагенов:

Физические мутагены: ионизирующие излучения, тепловое излучение, ультрафиолетовое излучение.

Химические мутагены: аналоги азотистых оснований (например, 5-бромурацил), альдегиды, нитриты, метилирующие агенты, гидроксиламин, ионы тяжелых металлов, некоторые лекарственные препараты и средства защиты растений.

Биологические мутагены: чистая ДНК, вирусы, антивирусные вакцины.

Аутомутагены – промежуточные продукты обмена веществ (интермедиаты). Например, этиловый спирт сам по себе мутагеном не является. Однако в организме человека он окисляется до ацетальдегида, а это вещество уже является мутагеном.

Молекулярные механизмы генных мутаций. Генетический материал — ДНК — очень лабилен. Он может меняться, мутировать в результате как внешних, так и внутренних воздействий. Ито­гом возникающих изменений, если они происходят в со­матических клетках (а они происходят непрерывно с са­мой первой минуты существования нового человеческо­го организма — зиготы — до последней минуты его жиз­ни), являются многочисленные болезни, включая рако­вые опухоли и, по-видимому, старение и смерть. Если же они происходят в клетках полового пути, то возникают мутации, которые могут в процессе эволюции закрепляться и распространяться в популяции и приводить к полиморфизму, если они не отсеиваются в силу случай­ных причин или в силу их вредного воздействия на жиз­неспособность индивидуума и его потомства.

В целом разнообразие генов зависит от скорости мутаций, разме­ра и демографической истории популяции, в которой происходят мутации, времени, в течение которого про­исходит накопление этих различий и селекции. Степень разнообразия, которое может поддерживаться в попу­ляции, прямо пропорциональна ее размеру. Сравни­тельно небольшая вариабельность в популяции чело­века (вариабельность генома шимпанзе — нашего бли­жайшего родственника — значительно выше, чем у че­ловека) является результатом ее молодого возраста и происхождения от сравнительно небольшой началь­ной популяции.

Вредные мутации постоянно возникают, но быстро отсеиваются из популяции. Существует баланс между вновь возникающими мутациями и их отсеиванием се­лекцией. В результате вредные мутации, вызывающие болезнь, обладают двумя свойствами: они встречаются редко, и каждая конкретная мутация, существующая в популяции, возникла недавно. Что касается обычного полиморфизма, то механизм его поддержания в популя­ции, несмотря на длительную и интенсивную дискуссию по этому поводу, неясен и, возможно, прояснится, когда удастся достаточно быстро и сравнительно недорого сравнивать множество геномов и провести корреляции между частотами определенных аллелей и историями различных популяций.

В молекулах ДНК могут происходить изменения последовательности нуклеотидов. Такие изменения, если они затрагивают функционально активные гены, могут приводить к нарушениям метаболизма или функций (признаков). Если эти изменения не приводят к гибели организма или клетки — они могут передаваться по наследству. Следовательно, генные мутации — это стабильные изменения структуры генов, повторяющиеся в последующих циклах репликации и проявляющиеся у потомства в виде новых вариантов признаков. Все разновидности мутаций связаны с изменением нуклеотидной последовательности генов.

Механизмы возникновения генных мутаций (замена, вставка, выпадение).

ДНК состоит из 2-х полинуклеотидных цепей. Сначала изменение возникает в 1-й цепи ДНК – это полумутационное состояние или “первичное повреждение ДНК”. Каждую секунду в клетке имеет место 1 первичное повреждение ДНК.

Когда повреждение переходит на вторую цепь ДНК то, говорят о том, что произошла фиксация мутации, то есть возникла “полная мутация”.

Первичные повреждения ДНК возникают при нарушении механизмов репликации, транскрипции, кроссинговера

 

В результате генных мутаций у человека возникает большое число болезней обмена веществ:

А. аутосомно-доминантного типа – арахнодактилия, нейрофиброматоз;

Б. аутосмно-рецессивного – альбинизм, идиотия;

В. сцепленные с полом – гемофилия, дальтонизм, некоторые формы аллергических реакций.

№14. Хромосомные мутации. Хромосомные мутации приводят к изменению структуры хромосом. Они видны под световым микроскопом. Классифицируются на внутри- и межхромосомные перестройки.

Внутрихромосомные перестройки возникают в результате перестройки в строении хромосомы:

  1. Делеции – нехватка части хромосомы, трачен внутренний участок хромосомы, теломера не затронута.
  2. Дупликация – удвоение участка хромосомы, один из участков хромосомы повторяется.
  3. Инверсия – изменения последовательности расположения генов в хромосоме в результате поворота участка хромосомы на 180 градусов.

Межхромосомные перестройки возникают в результате перераспределения генного материала между разными хромосомами:

Транслокация – возникают в случае обмена участками между негомологичными хромосомами в мейозе.

Трансформация – состоит в переносе участка ДНК из одной клетки в другую одного итого же вида.

Трансдукция – является переносом и рекомбинацией генов у бактерий с помощью бактериофагов, а среди эукариот клеток с помощью вирусов.

Основной предпосылкой для возникновения хромосомных перестроек является появление в клетке двунитевых разрывов ДНК, то есть разрывов обеих нитей спирали ДНК в пределах нескольких пар оснований. Двунитевые разрывы ДНК возникают в клетке спонтанно или под действием различных мутагенных факторов: физической (ионизирующее излучение), химической или биологической (транспозоны, вирусы) природы. Двунитевые разрывы ДНК возникают запрограммированно во время профазы Iмейоза, а также при созревании Т- и B-лимфоцитов во время специфической соматической V(D)J рекомбинации. Нарушения и ошибки процесса воссоединения двунитевых разрывов ДНК приводят к появлению хромосомных перестроек[3].

Механизмы возникновения геномных мутаций. Механизм возникновения геномных мутаций связан с патологией нарушения нормального расхождения хромосом в мейозе (анафаза-I и анафаза-II), в результате чего образуются аномальные гаметы (по количеству хромосом), после оплодотворения которых возникают гетероплоидные зиготы. Хромосомные мутации (хромосомные перестройки, хромосомные аберрации) приводят к изменению числа, размеров и организации хромосом. В случае гетероплоидии особенно тяжелы моносомии. Моносомии по аутосомам заканчиваются летально еще в первые дни эмбрионального развития или приводят к гибели зародыша на более поздних стадиях (спонтанные аборты). Полные трисомии описаны у человека по большому количеству хромосом: 8, 9, 13, 14, 18, 21, X, Y. Наиболее изученными синдромами, в основе которых лежат нарушения в системе аутосом (геномные мутации, хромосомные мутации) являются трисомии 21, 13, 18, транслокационная форма Дауна, синдром «кошачьего крика», в системе половых хромосом трисомии XXY, XXX, XYY и моносомия XO.

Структурные хромосомные мутации. Это нарушение, которое связано с разрывом и последующим связыванием участков хромосом, в результате чего изменяется исходный генетический материал. Они могут быть: - сбалансированными — в этом случае не наблюдается дефицит или избыток генетического материала, поэтому в большинстве случаев они никак не проявляются. Но существует огромный риск передачи несбалансированного набора генетического материала при размножении. 5 способов наслаждаться сексом в браке 7 фраз, разрушительных для психики ребенка. Зачем кошки несут убитых животных домой - несбалансированными — в этом случае родившийся ребенок имеет ряд тяжелых патологий. Различают следующие способы изменения структуры хромосом: Делеции — хромосомные мутации, которые связаны с разрывом хромосомной нити и потерей ее важной части. Подобные изменения приводят к тяжелым последствиям, а в некоторых случаях и к летальному исходу. Дупликации — мутации, которые связаны с удвоением определенного участка ДНК, при этом тяжелые патологии отсутствуют. Транслокация — осуществляется при разрыве двух рядом расположенных хромосом. В результате этого обе хромосомы обмениваются своими частями, образовывая новый набор генетического материала. Инсеции — характеризируются переносом участка одной хромосомы на другую. Инверсии — при такой форме мутации разрыв хромосомы происходит в двух местах одновременно. После этого тот участок, который расположен между разрывами, поворачивается вокруг оси, меняя генетическую последовательность. Числовые хромосомные мутации. Как уже говорилось, такого рода мутации связаны с изменением количества хромосом. Выделяют следующие типы: Трисомия — хромосомная мутация, которая сопровождается появлением в генетическом наборе дополнительной хромосомы. Это происходит в том случае, если во время деления клетки дочерние хромосомы не расходятся. Подобные изменения вызывают и фенотипические патологии. Некоторые трисомии ведут к внутриутробной смерти плода уже на ранних стадиях его развития. Причины мутации до конца еще не выяснены. Моносомия — хромосомная мутация, которая характеризируется исчезновением одной хромосомы. В большинстве случаев такой организм не жизнеспособен, поэтому умирает на ранних стадиях эмбрионального развития. Полиплодия — очень редкое явление, которое характеризируется наличием в клетке утроенного, а иногда даже и учетверенного набора хромосом. Организм с подобными отклонениями не способен жить — он или умирает еще до родов, или сразу же после них. Числовые изменения в половых хромосомах — довольно распространенное явление, которое сопровождается увеличением количества хромосом в последней, 23ей паре.

№16. Геномные мутации - это мутации, которые приводят к добавлению либо утрате одной, нескольких или полного гаплоидного набора хромосом

1. Полиплоидия – увеличение диплоидного числа хромосом путем добавления целого хромосомного набора. Это изменение хромосм в кариотипе кратное гаплоидному набору (среди животных встречается крайне редко). Например: 2п – диплоид, 3п – триплоид, 4п – тетраплоид и т.д.

Полиплоидия приводит к изменению признаков организма. Широко используется в селекции.

А) Автополиплоидия - формы, возникающие на основе умножения геномов одного вида. Возникают в естественных условиях. Долгое время сохранятся лишь у видов при вегетативном размножении. Полиплоидные формы очень крупные, имеют большой запас питательных веществ.

Б) Аллополиплоидия – формы возникают при умножении геномов разных видов. Межвидовые гибриды часто бесплодны.

Триплоидия – одна из наиболее частых спонтанных аномалий набора хромосом в эмбриогенезе человека (20%). Триплоидный зародыш погибает в начале второго месяца внутриутробного развития.

Тетраплоидия у человека встречается редко (5%), сопровождается серьезными пороками развития. Зародыш гибнет в первые два месяца эмбриогенеза.

2. Гаплоидия (1п) – одинарный набор хромосом. Жизнеспособность гаплоидов снижается, т.к. проявляются все рецессивные гены. Для млекопитающих это летальная мутация.

3. Гетероплоидия, или анеуплоидия – изменении числа хромосом в кариотипе некратное гаплоидному набору. Они образуются в результате нерасхождения некоторых пар хромосом при деление клеток.

В результате возникают особи с аномальным числом хромосом:

- моносомики (2п-1)

- полисомики (2п+1-трисомики, 2п+2-тетрасомики)

- нуллисомики (2п-2).

Полные трисомии описаны у человека по большому числу хромосом: 8, 9, 13, 14, 18, 21, X,Y. Только трисомии по 21 и22 хромосоме обладают жизнеспособность, другие аутосомные трисомии приводят к гибели в первые дни после рождения. Трисомия по 21 паре хромосом – синдром Дауна. Полисомия поX-хромосомам может доходить до пяти с сохраненим жизнеспособности индивида.

№17. Соматические мутации

Мутации различного ранга (генные, хромосомные или геномные), возникающие в соматических клетках организма, наследуются потомками этих клеток и делают организм мозаиком, т.е. особью со смешанными популяциями клеток. В разд. 3.6.5.1 и 3.6.5.2 рассмотрены примеры естественного мозаицизма женского организма по активно функционирующим в его клетках Х-хромосомам и связанное с этим явление аллельного исключения, когда в разных клетках организма экспрессируются разные аллели Х-сцепленных генов. К примеру, у женщины — гетерозиготной носительницы рецессивного аллеля гемофилии — степень нарушения свертывающей системы крови зависит от соотношения соответствующих клеток с генетически инактивированными Ххромосомами, несущими нормальный или му-тантный аллель. Нередко у человека встречается мозаицизм по геномным мутациям, связанный с нарушением расхождения хромосом при митозе. Например, в случае синдрома Дауна (трисомия по 21-й хромосоме) мозаицизм встречается с частотой 2 на 48 пациентов, а в популяции их частота равна 1 на 31 000. Чем раньше в ходе развития организма происходит нарушение деления соматических клеток, сопровождающееся нерасхождением дочерних хромосом к полюсам ахроматинового веретена, тем более выраженной будет симптоматика заболевания, вызываемого данной анэуплоидией. Нарушение митоза на более поздних стадиях индивидуального развития приводит к локальному мозаицизму, который может не сопровождаться выраженными отклонениями от нормы. В этом случае наиболее опасным является мозаицизм клеток генеративных тканей, из которых с достаточно большой вероятностью организм может образовывать гаметы с аномальным числом хромосом. Иногда возникающие соматические мутации являются причиной появления злокачественных новообразований. На рис. 4.2 представлена последовательность событий, приводящих к образованию таких опухолей. Как правило, в основе лежит повреждение ДНК, вызываемое внутренними факторами (нарушением процессов репликации, репарации или рекомбинации) или внешними воздействиями (ионизирующей радиацией, химическими мутагенами или вирусами). Одним из результатов такого повреждения ДНК может оказаться появление клона клеток, обладающего дефектами регуляции клеточного размножения, что приводит к опухолевому росту. Причиной злокачественного разрастания ткани могут быть также нарушение митоза и неравноценное распределение хромосом между дочерними клетками с возникновением анэуплоидий или хромосомных аберраций. Это вызывает либо гибель клеток, либо приводит к появлению клонов, способных к неконтролируемому росту. В злокачественных образованиях обычно встречаются субклоны, имеющие разные кариотипы, что свидетельствует о множественных аномалиях митоза в клетках опухолей.

Так как в основе злокачественного перерождения тканей может лежать изменение наследственного материала клеток, становится очевидной важная роль мутагенных факторов в процессе возникновения опухолей. Одним из таких мутагенных факторов являются вирусы, которые могут индуцировать в хромосомах то или иное мутационное изменение. Среди опухолей человека вирусное происхождение имеетлимфома Беркитта. Пониманию молекулярно-биологических механизмов опухолевого роста способствовало открытие так называемых онкогенов, вызывающих злокачественное перерождение клеток и входящих в состав генома ретровирусов. Геном ретровируса состоит из одноцепочечной РНК и содержит ген обратной транскриптазы. При проникновении вируса в клетку-хозяина под контролем фермента обратной транскриптазы образуются множественные копии генетической информации вируса, но уже в виде двухцепочечной ДНК, которые встраиваются в ДНК клетки-хозяина. Функционирование таких ДНК-копий в составе генома клетки приводит к синтезу вирусных РНК и белков, причем вирусный онкоген (v-onc) трансформирует клеткухозяина в опухолевую.

Использование ДНК-зондов на основе ретровирусных онкогенов обнаружило их гомологию некоторым собственным нуклеотидным последовательностям генома клеток. Эти участки получили название протоонкогенов или клеточных онкогенов (c-onc). Протоонкогены участвуют в контроле клеточного роста, но в обычном состоянии не приводят к опухолевой трансформации. Их мутантные аллели, стимулируя митоз, могут вызвать рост опухолей. Иногда активация клеточного онкогена обусловливается единичной точковой мутацией в нем. В других случаях нет необходимости в такой мутации, так как трансформирующий эффект наблюдается при присоединении онкогена к фрагментам ДНК, обладающим сильными промоторными свойствами. В таких ситуациях следует допустить, что протоонкогенам присущи свойства транспозонов, или «прыгающих генов». Предполагают, что вирусные онкогены на каком-то этапе эволюции произошли от клеточных онкогенов, интегрированных в геном вируса. Причины, обусловливающие большую трансформирующую активность вирусных онкогенов в сравнении с клеточными, до настоящего времени не вполне ясны. В опухолевых клетках часто наблюдаются хромосомные аномалии, причем некоторые опухоли отличаются наличием специфических хромосомных дефектов. Установлено, что онкогены нередко обнаруживаются в непосредственной близости от точек разрывов, происходящих при опухолеспецифичных хромосомных перестройках. Это подтверждает их роль в злокачественной трансформации клеток.

Генеративные мутации

Изменения наследственной программы половых клеток человека приводят к рождению потомства с различными наследственно обусловленными болезнями, в зависимости от ранга мутаций—геннымиилихромосомными. Различные генные мутации по-разному сказываются на жизнеспособности организма, причем в случае их рецессивности они могут долго не проявляться фенотипически у потомков. Хромосомные перестройки и геномные мутации приводят к выраженным отклонениям в развитии и часто являются причиной гибели организма на разных стадиях его онтогенеза, обычно в раннем эмбриогенезе. В значительной степени именно этими мутациями определяется высокий процент (15%)прерывания диагностированных беременностей. Триплоидии плода, как правило, приводят к прерыванию беременности на ранних стадиях, однако описано очень небольшое число случаев живорождения триплоидов. Анэуплоидия по разным хромосомам встречается как в материале абортусов, так и у рожденных детей. Некоторые анэуплоидий несовместимы с жизнью. Так, трисомия по 16-й хромосоме обнаруживается только в материале абортусов. В то же время у человека известны синдромы, связанные с аномалиями числа хромосом, характеризующиеся разной степенью жизнеспособности.

Наиболее частым хромосомным заболеванием у человека является синдром Дауна, обусловленный три-сомией по 21-й хромосоме, встречающийся с частотой 1—2 на 1000 (рис. 4.3). Примерно в 60% случаев трисомия 21 является причиной гибели плода, около 30% родившихся умирает на первом году жизни. Еще 46% не переживает Злетний рубеж, однако иногда люди с синдромом Дауна доживают до значительного возраста (рис. 4.4), хотя в целом продолжительность их жизни сокращена. Применение эффективных противомикробных препаратов позволяет несколько увеличить продолжительность жизни таких больных. Трисомия 21 может быть результатом случайного нерасхождения гомологичных хромосом в мейозе. Наряду с этим известны случаи регулярной трисомии, связанной с транслокацией 21-й хромосомы на другую—21, 22, 13, 14или 15-ю хромосому

Среди других аутосомных трисомий известны трисомии по 13-й хромосоме — Синдром Патау (рис. 4.6), а также по 18-й хромосоме — синдром Эдвардса (рис. 4.7), при которых жизнеспособность новорожденных резко снижена. Они гибнут в первые месяцы жизни из-за множественных пороков развития. Применение методов дифференциального окрашивания хромосом позволило открыть три новых синдрома, обусловленных трисомиями по 8, 9 и 22-й хромосомам, при которых также наблюдаются тяжелые комплексные пороки развития (рис. 4.8). Достаточно часто у человека встречаются анэуплоидии по половым хромосомам (рис. 4.9—4.11). В отличие от анэуплоидии по аутосомам дефекты умственного развития у больных выражены не столь отчетливо, у многих оно в пределах нормы, а иногда даже выше среднего. Вместе с тем у них постоянно наблюдаются нарушения развития половых органов и гормонозависимого роста тела. Реже встречаются пороки развития других систем. Относительно благоприятные последствия увеличения числа Х-хромосом, видимо, связаны с возможностью компенсации дозы соответствующих генов благодаря естественной генетической инактивации этих хромосом, а также мозаичному характеру такой инактивации. Среди анэуплоидных синдромов по половым хромосомам моносомия Х (ХО) (синдром Шерешевского — Тернера) встречается много реже, чем трисомия X, синдром Клайнфельтера (XXY, XXXY), а также XYY, что указывает на наличие сильного отбора против гамет, не содержащих половых хромосом, или против зигот ХО. Это предположение подтверждается достаточно часто наблюдаемой моносомией Х среди спонтанно абортированных зародышей. В связи с этим допускается, что выжившие зиготы ХО являются результатом не мейотического, а митотического нерасхождения, или утраты Х-хромосомы на ранних стадиях развития (см. рис.4.9).МоносомииYOу человека не обнаружено.

Организмы с анэуплоидией по половым хромосомам при наличии Yхромосомы развиваются по мужскому типу и фенотипически дают синдром Клайнфельтера (рис. 4.11). Это является еще одним свидетельством в пользу расположения фактора, определяющего мужской тип развития вY-хромосоме. Из синдромов, связанных со структурными аномалиями хромосом, известен транслокационный синдром Дауна (см. рис. 4.5), при котором число хромосом в кариотипе формально не изменено и равно 46, так как дополнительная 21-я хромосома транслоцирована на одну из акроцентрических хромосом. При транслокации длинного плеча 22-й хромосомы на 9-ю развивается хронический миелолейкоз. При делении короткого плеча 5-й хромосомы развивается синдром кошачьего крика, при котором наблюдаются общее отставание в развитии, низкая масса при рождении, лунообразное лицо с широко расставленными глазами и характерный плач ребенка, напоминающий кошачье мяукание, причиной которого является недоразвитие гортани.

У носителей некоторых перицентрических инверсий нередко наблюдаются аномалии в виде умственной отсталости той или иной степени и пороков развития. Довольно часто такие перестройки наблюдаются в 9-й хромосоме человека, однако они существенно не влияют на развитие организма. Таким образом, нарушение наследственной программы организма, развивающегося из аномальных гамет, или мозаицизм его клеток, связанный с соматическими мутациями, являются причиной либо гибели организма, либо более или менее выраженного снижения его жизнеспособности.

№18. Мутагенные факторы.

Мутагены – факторы, вызывающие наследственные изменения – мутации.

Мутагенами могут быть различные факторы, вызывающие изменения в структуре и количестве хромосом. По происхождению мутагены классифицируют на эндогенные, образующиеся в процессе жизнедеятельности организма и экзогенные – все прочие факторы, в том числе и условия окружающей среды.

По природе возникновения мутагены классифицируют на физические, химические и биологические.

Физические мутагены: ионизирующее излучение; радиоактивный распад; ультрафиолетовое излучение; чрезмерно высокая или низкая температура.

Химические мутагены: некоторые алкалоиды (колхицин – один из самых распространенных в селекции мутагенов); окислители и восстановители (нитраты, нитриты, активные формы кислорода); алкилирующие агенты; нитропроизводные мочевины; некоторые пестициды; некоторые пищевые добавки (ароматические углеводороды, цикламаты); продукты перерабоки нефти; органические растворители; лекарственные препараты (цитостатики, иммунодепрессанты).

К химическим мутагенам условно можно отнести и ряд врусов (мутагенным фактором вирусов являются их нуклеиновые кислоты – ДНК или РНК)

Химические мутагены должны обладать следующими качествами: • высокой проникающей способностью; • свойством изменять коллоидное состояние хромосом; • определенным действием на состояние хромосомы или гена.

Биологические мутагены: специфические последовательности ДНК (транспозоны); некоторые вирусы (вирус кори, краснухи, гриппа); продукты обмена веществ (продукты окисления липидов); антигены некоторых микроорганизмов.

Для обоснования введения законодательных документов, направленных на проверку факторов среды на мутагенность, необходимо социально-экономическое понимание их эффективности. Однако концепция «риск-выгода» в этом случае вряд ли применима. Органы здравоохранения нуждаются в научных рекомендациях, чтобы на уровне гигиенического нормирования обеспечить безопасность среды в генетическом плане. Непременным условием для законодательных акций должно быть четкое представление о том, как идентифицировать качественные и количественные генетические эффекты. Человеческие популяции уже отягощены значительным грузом вредных мутаций. Поэтому было бы ошибкой устанавливать для генетических изменений какой-либо допустимый уровень, тем более что еще не ясен вопрос о последствиях популяционных изменений в результате повышения мутационного процесса. Принимая во внимание это обстоятельство, а также тот факт, что для большинства химических мутагенов (если не для всех) отсутствует порог действия, можно полагать, что предельно допустимой «генетически-повреждающей» концентрации для химических мутагенов, как и дозы физических факторов, существовать не должно.

При оценке опасности мутагенеза, возникающего под влиянием факторов внешней среды, необходимо учитывать существование естественных антимутагенов (например, в пище). В активации и инактивации мутагенов большую роль играют свободные радикалы, цитохром р-450, супероксиддисмутаза, каталаза, глутатионтрансфераза. Антимутагены способствуют устранению спонтанных и индуцированных повреждений ДНК.

Социальные и эволюционные последствия искусственного антимутагенеза еще только обсуждаются. Их надо изучать, чтобы не нарушить сложившиеся эволюционные связи и темпы эволюции. Это в полной мере относится и к человеку, у которого применение искусственных мутагенов может изменить скорость спонтанного мутирования в соматических клетках, в частности в иммунокомпетентных клетках.

Спонтанный и индуцированный мутагенез.

Мутации, возникающие в естественных условиях, называют спонтанными, а искусственно вызванные — индуцированными. Однако доказано, что существуют общие причины спонтанного и индуцированного мутационного процессов. К настоящему времени разработано много приемов индуцирования мутаций. В их основе лежит воздействие на организмы различными физическими факторами (мутагенами). Из них в практике используют главным образом ионизирующие излучения различного типа и некоторые химические вещества. Действуя этими факторами на клетки организма, можно резко повысить их мутационную изменчивость. Эффективными способами получения исходного материала являются методы индуцированного мутагенеза – искусственного получения мутаций. Индуцированный мутагенез позволяет получить новые аллели, которые в природе обнаружить не удается. Например, этим путем получены высокопродуктивные штаммы микроорганизмов (продуцентов антибиотиков), карликовые сорта растений с повышенной скороспелостью и т.д. Экспериментально полученные мутации у растений и микроорганизмов используют как материал для искусственного отбора. Этим путем получены высокопродуктивные штаммы микроорганизмов (продуцентов антибиотиков), карликовые сорта растений с повышенной скороспелостью и т.д.

Для получения индуцированных мутаций у растений используют физические мутагены (γ-излучение, рентгеновское и ультрафиолетовое излучение) и специально созданные химические супермутагены (например, N-метил-N-нитрозомочевина). Дозу мутагенов подбирают таким образом, чтобы погибало не более 30…50% обработанных объектов. Интерес к мутагенезу обусловлен тем, что мутации часто представляют большую селекционную ценность, так как у них могут возникнуть новые, ранее неизвестные полезные признаки. Полученные мутантные формы или непосредственно дают начало новому сорту (например, карликовые томаты с желтыми или оранжевыми плодами) или используются в дальнейшей селекционной работе.

Однако применение индуцированных мутаций в селекции все же ограничено, поскольку мутации приводят к разрушению исторически сложившихся генетических комплексов. У животных мутации практически всегда приводят к снижению жизнеспособности и/или бесплодию. К немногим исключениям относится тутовый шелкопряд. В результате индуцированного мутагенеза часто получают частично мутантные растения (химерные организмы). В этом случае говорят о соматических (почковых) мутациях. Многие сорта плодовых растений, винограда, картофеля являются соматическими мутантами. Эти сорта сохраняют свои свойства, если их воспроизводят вегетативным путем, например, прививая обработанные мутагенами почки (черенки) в крону немутантных растений; таким путем размножают, например, бессемянные апельсины.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: