Дано: прямые а и b, АВ – секущая, накрест лежащие углы ∠1 = ∠2.
Доказать, что а || b
Доказательство: (метод от противного). Предположим, что прямые а и b не параллельны, а значит они пересекаются в некоторой точке М. Рассмотрим ∆АВМ: ∠1 будет внешним углом для этого треугольника, а ∠2 – внутренним. Из теоремы о внешнем угле треугольника следует, что ∠1 больше ∠2, а это противоречит условию (∠1 = ∠2), значит, прямые а и b не могут пересекаться, поэтому они параллельны. Ч.т.д.
3. На окружности с центром О отмечены точки А и В так, что ∠АОВ – прямой. Отрезок ВС – диаметр окружности. Докажите, что хорды АВ и АС равны.
Доказательство: Рассмотрим ∆ВОА и ∆СОА, у них сторона ОА – общая, СО = ОВ (как радиусы одной окружности), ∠СОА = ∠ВОА = 900.
Следовательно, ∆ВОА = ∆СОА по I признаку. Ч.т.д.