Передаточная функция и импульсная характеристика цепи




Интеграл Дюамеля.

Зная реакцию цепи на единичное возмущающее воздействие, т.е. функцию переходной проводимости или (и) переходную функцию по напряжению , можно найти реакцию цепи на воздействие произвольной формы. В основе метода – метода расчета с помощью интеграла Дюамеля – лежит принцип наложения.

При использовании интеграла Дюамеля для разделения переменной, по которой производится интегрирование, и переменной, определяющей момент времени, в который определяется ток в цепи, первую принято обозначать как , а вторую - как t.

Пусть в момент времени к цепи с нулевыми начальными условиями (пассивному двухполюснику ПД на рис. 1) подключается источник с напряжением произвольной формы. Для нахождения тока в цепи заменим исходную кривую ступенчатой (см. рис. 2), после чего с учетом, что цепь линейна, просуммируем токи от начального скачка напряжения и всех ступенек напряжения до момента t, вступающих в действие с запаздыванием по времени.

В момент времени t составляющая общего тока, определяемая начальным скачком напряжения , равна .

В момент времени имеет место скачок напряжения , который с учетом временного интервала от начала скачка до интересующего момента времени t обусловит составляющую тока .

Полный ток в момент времени t равен, очевидно, сумме всех составляющих тока от отдельных скачков напряжения с учетом , т.е.

.

Заменяя конечный интервал приращения времени на бесконечно малый, т.е. переходя от суммы к интегралу, запишем

. (1)

Соотношение (1) называется интегралом Дюамеля.

Следует отметить, что с использованием интеграла Дюамеля можно определять также напряжение. При этом в (1) вместо переходной проводимости будет входить переходная функция по напряжению.

 

 


Последовательность расчета с использованием
интеграла Дюамеля

  1. Определение функции (или ) для исследуемой цепи.
  2. Запись выражения (или ) путем формальной замены t на .
  3. Определение производной .
  4. Подстановка найденных функций в (1) и интегрирование определенного интеграла.

В качестве примера использования интеграла Дюамеля определим ток в цепи рис. 3, рассчитанный в предыдущей лекции с использованием формулы включения.

Исходные данные для расчета: , , .

  1. Переходная проводимость

.

  1. .
  2. .


18. Передаточная функция.

 

Отношение оператора воздействия к собственному оператору называют передаточной функцией или передаточной функцией в операторной форме.

Звено, описываемое уравнением или уравнениями в символической или операторной форме записи можно охарактеризовать двумя передаточными функциями: передаточной функцией по входной величине u; и передаточной функцией по входной величине f.

 

и

 

Используя передаточные функции, уравнение записывают в виде . Это уравнение представляет собой условную более компактную запись форму записи исходного уравнения.

Наряду с передаточной функцией в операторной форме широко используют передаточную функцию в форме изображений Лапласа.

 

Передаточные функции в форме изображений Лапласа и операторной форме с точностью до обозначений совпадают. Передаточную функцию в форме, изображения Лапласа можно получить из передаточной функции в операторной форме, если в последней сделать подстановку p=s. В общем случае это следует из того, что дифференцированию оригинала — символическому умножению оригинала на p — при нулевых начальных условиях соответствует умножение изображения на комплексное число s.

 

Сходство между передаточными функциями в форме изображения Лапласа и в операторной форме чисто внешнее, и оно имеет место только в случае стационарных звеньев (систем), т.е. только при нулевых начальных условиях.

 

Рассмотрим простую RLC (последовательно) цепь, её передаточная функция W(p)=UВЫХ/UВХ


Интеграл Фурье.

 

Функция f (x), определенная на всей числовой оси называется периодической, если существует такое число, что при любом значении х выполняется равенство . Число Т называется периодом функции.

Отметим некоторые с в о й с т в а этой функции:

1) Сумма, разность, произведение и частное периодических функций периода Т есть периодическая функция периода Т.

2) Если функция f (x) период Т, то функция f (ax)имеет период .

3) Если f (x)- периодическая функция периода Т, то равны любые два интеграла от этой функции, взятые по промежуткам длины Т (при этом интеграл существует), т. е. при любых a и b справедливо равенство .

 

Тригонометрический ряд. Ряд Фурье

 

Если f (x) разлагается на отрезке в равномерно сходящийся тригонометрический ряд: (1)

,то это разложение единственное и коэффициенты определяются по формулам:

где n =1,2,...

Тригонометрический ряд (1) рассмотренного вида с коэффициентами называется тригонометрическим рядом Фурье.

 

Комплексная форма ряда Фурье

Выражение называется комплексной формой ряда Фурье функции f (x), если определяется равенством

, где

Переход от ряда Фурье в комплексной форме к ряду в действительной форме и обратно осуществляется с помощью формул:

(n =1,2,...)

Интегралом Фурье функции f(x) называется интеграл вида:

, где .

 


Частотные функции.

 

Если подать на вход системы с передаточной функцией W(p) гармонический сигнал

то после завершения переходного процесса на выходе установится гармонические колебания

с той же частотой , но иными амплитудой и фазой, зависящими от частоты возмущающего воздействия. По ним можно судить о динамических свойствах системы. Зависимости, связывающие амплитуду и фазу выходного сигнала с частотой входного сигнала, называются частотными характеристиками (ЧХ). Анализ ЧХ системы с целью исследования ее динамических свойств называется частотным анализом.

 

Подставим выражения для u(t) и y(t) в уравнение динамики

(aоpn + a1pn - 1 + a2pn - 2 +... + an)y = (bоpm + b1pm-1 +... + bm)u.

Учтем, что

а значит

pnu = pnUmejwt = Um (jw)nejwt = (jw)nu.

 

 

Аналогичные соотношения можно записать и для левой части уравнения. Получим:

По аналогии с передаточной функцией можно записать:

.

W(j ), равная отношению выходного сигнала к входному при изменении входного сигнала по гармоническому закону, называется частотной передаточной функцией. Легко заметить, что она может быть получена путем простой замены p на j в выражении W(p).

 

W(j ) есть комплексная функция, поэтому:

 

где P() - вещественная ЧХ (ВЧХ); Q() - мнимая ЧХ (МЧХ); А() - амплитудная ЧХ (АЧХ): () - фазовая ЧХ (ФЧХ). АЧХ дает отношение амплитуд выходного и входного сигналов, ФЧХ - сдвиг по фазе выходной величины относительно входной:

;

Если W(j ) изобразить вектором на комплексной плоскости, то при изменении от 0 до + его конец будет вычерчивать кривую, называемую годографом вектора W(j ), или амплитудно - фазовую частотную характеристику (АФЧХ) (рис.48).

 

Ветвь АФЧХ при изменении от - до 0 можно получить зеркальным отображением данной кривой относительно вещественной оси.


В ТАУ широко используются логарифмические частотные характеристики (ЛЧХ) (рис.49): логарифмическая амплитудная ЧХ (ЛАЧХ) L() и логарифмическая фазовая ЧХ (ЛФЧХ) ().

Они получаются путем логарифмирования передаточной функции:

 

 

ЛАЧХ получают из первого слагаемого, которое из соображений масштабирования умножается на 20, и используют не натуральный логарифм, а десятичный, то есть L() = 20lgA(). Величина L() откладывается по оси ординат в децибелах.

 

Изменение уровня сигнала на 10 дб соответствует изменению его мощности в 10 раз. Так как мощность гармонического сигнала Р пропорциональна квадрату его амплитуды А, то изменению сигнала в 10 раз соответствует изменение его уровня на 20дб,так как

lg(P2/P1) = lg(A22/A12) = 20lg(A2/A1).

 

По оси абсцисс откладывается частота w в логарифмическом масштабе. То есть единичным промежуткам по оси абсцисс соответствует изменение w в 10 раз. Такой интервал называется декадой. Так как lg(0) = - , то ось ординат проводят произвольно.

 

ЛФЧХ, получаемая из второго слагаемого, отличается от ФЧХ только масштабом по оси . Величина () откладывается по оси ординат в градусах или радианах. Для элементарных звеньев она не выходит за пределы: - + .

 

ЧХ являются исчерпывающими характеристиками системы. Зная ЧХ системы можно восстановить ее передаточную функцию и определить параметры.


Обратные связи.

Принято считать, что звено охвачено обратной связью, если его выходной сигнал через какое-либо другое звено подается на вход. При этом, если сигнал обратной связи вычитается из входного воздействия (), то обратную связь называют отрицательной. Если сигнал обратной связи складывается с входным воздействием (), то обратную связь называют положительной.

Передаточная функция замкнутой цепи с отрицательной обратной связью — звена, охваченного отрицательной обратной связью,— равна передаточной функции прямой цепи , деленной на единицу плюс передаточная функция разомкнутой цепи

Передаточная функция замкнутой цепи с положительной обратной связью равна передаточной функции прямой цепи, деленной на единицу минус передаточная функция разомкнутой цепи


22. 23. Четырёхполюсники.

При анализе электрических цепей в задачах исследования взаимосвязи между переменными (токами, напряжениями, мощностями и т.п.) двух каких-то ветвей схемы широко используется теория четырехполюсников.

Четырехполюсник – это часть схемы произвольной конфигурации, имеющая две пары зажимов (отсюда и произошло его название), обычно называемые входными и выходными.

Примерами четырыхполюсника являются трансформатор, усилитель, потенциометр, линия электропередачи и другие электротехнические устройства, у которых можно выделить две пары полюсов.

В общем случае четырехполюсники можно разделить на активные, в структуру которых входят источники энергии, и пассивные, ветви которых не содержат источников энергии.

Для записи уравнений четырехполюсника выделим в произвольной схеме ветвь с единственным источником энергии и любую другую ветвь с некоторым сопротивлением (см. рис. 1,а).

В соответствии с принципом компенсации заменим исходное сопротивление источником с напряжением (см. рис. 1,б). Тогда на основании метода наложения для цепи на рис. 1,б можно записать

; (1)

 

. (2)

Решая полученные уравнения (1) и (2) относительно напряжения и тока на первичных зажимах, получим

;

или

; (3)

 

, (4)

где ; ; ; - коэффициенты четырехполюсника.

Учитывая, что в соответствии с принципом взаимности , видно, что коэффициенты четырехполюсника связаны между собой соотношением

. (5)

Уравнения (3) и (4) представляют собой основные уравнения четырехполюсника; их также называют уравнениями четырехполюсника в А-форме (см. табл. 1). Вообще говоря, существует шесть форм записи уравнений пассивного четырехполюсника. Действительно, четырехполюсник характеризуется двумя напряжениями и и двумя токами и . Любые две величины можно выразить через остальные. Так как число сочетаний из четырех по два равно шести, то и возможно шесть форм записи уравнений пассивного четырехполюсника, которые приведены в табл. 1. Положительные направления токов для различных форм записи уравнений приведены на рис. 2. Отметим, что выбор той или иной формы уравнений определяется областью и типом решаемой задачи.

 

Таблица 1. Формы записи уравнений пассивного четырехполюсника

 

Форма Уравнения Связь с коэффициентами основных уравнений
А-форма ; ;  
Y-форма ; ; ; ; ; ;
Z-форма ; ; ; ; ; ;
Н-форма ; ; ; ; ; ;
G-форма ; ; ; ; ; ;
B-форма ; . ; ; ; .

 


 

Характеристическое сопротивление и коэффициент
распространения симметричного четырехполюсника

В электросвязи широко используется режим работы симметричного четырехполюсника, при котором его входное сопротивление равно нагрузочному, т.е.

.

Это сопротивление обозначают как и называют характеристическим сопротивлением симметричного четырехполюсника, а режим работы четырехполюсника, для которого справедливо

,

называется режимом согласованной нагрузки.

,

решением которого является

. (15)

С учетом (15) уравнения (13) и (14) приобретают вид

;

.

Таким образом,

,

где - коэффициент распространения; - коэффициент затухания (измеряется в неперах); - коэффициент фазы (измеряется в радианах).

По определению

. (16)

 

Тогда

. (17)

Решая (17) и (18) относительно и , получим

и .

Учитывая, что

и ,

получаем уравнения четырехполюсника, записанные через гиперболические функции:

 

 


Передаточная функция и импульсная характеристика цепи

 

В радиотехнических цепях сопротивления нагрузки обычно велики и не влияют на четырехполюсник либо сопротивление нагрузки стандартно и уже учтено в схеме четырехполюсника.

Тогда четырехполюсник может характеризоваться одним параметром, устанавливающим связь между выходным и входным напряжениями при пренебрежении током нагрузок. При синусоидальном сигнале такой характеристикой является передаточная функция цепи (коэффициент передачи), равная отношению комплексной амплитуды сигнала на выходе к комплексной амплитуде сигнала на входе: , где – фазово-частотная характеристика, - амплитудно-частотная характеристика цепи.

Передаточная функция линейной цепи вследствие справедливости принципа суперпозиции позволяет анализировать прохождение сложного сигнала через цепь, разлагая его на синусоидальные составляющие. Другой возможностью использования принципа суперпозиции является разложение сигнала на сумму сдвинутых во времени d-функций d(t). Реакцией цепи на действие сигнала в виде d-функций является импульсная характеристика g(t), т. е. это сигнал на выходе, если сигнал на входе есть d-функция. при . При этом g(t) = 0 при t < 0 – выходной сигнал не может возникнуть ранее момента появления входного сигнала.

Экспериментально импульсную характеристику можно определить подавая на вход короткий импульс площадью единица и уменьшая длительность импульса при сохранении площади до тех пор, пока сигнал на выходе перестанет изменяться. Это и будет импульсная характеристика цепи.

Так как независимый параметр, связывающий напряжения на выходе и входе цепи, может быть только один, то между импульсной характеристикой и передаточной функцией имеется связь.

Пусть на вход подается сигнал в виде d-функции со спектральной плотностью . На выходе цепи будет импульсная характеристика , при этом все спектральные составляющие входного сигнала умножаются на передаточную функцию соответствующей частоты: . Таким образом, импульсная характеристика цепи и передаточная функция связаны преобразованием Фурье:

.

Иногда вводят так называемую переходную характеристику цепи h(t), являющуюся откликом на сигнал, называемый единичным скачком:

 

I(t) = 1 при t ³ 0

I(t) = 0 при t < 0

 

при этом , h(t) = 0 при t < 0.

 

Ввиду связи между передаточной функцией и импульсной характеристикой, на передаточную функцию накладываются ограничения:

 

· Условие, что g(t) должна быть вещественной, приводит к требованию, что , т. е. модуль передаточной функции (АЧХ) есть четная, а фазовый угол (ФЧХ) – нечетная функция частоты.

 

· Условие, что при t < 0, g(t) = 0 приводит к критерию Пэли-Винера:.

 

Например, рассмотрим идеальный фильтр низких частот ФНЧ с передаточной функцией.

 

 

 

Здесь интеграл в критерии Пэли-Винера расходится, как и для любой , обращающейся в нуль на конечном отрезке оси частот.

 

Импульсная характеристика такого фильтра есть

 

,

 

g(t) не равна нулю при t < 0, тем сильнее, чем меньше время задержки , которое определяет ее угол наклона . Это указывает на нереализуемость идеального ФНЧ, имеющего близкое приближение при достаточно больших .




Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: