В первую очередь оценивается суммарный прогиб валов под колесом 2 и 4:
;
.
гдеF2 и F4 – прогиб под колесом, приводящим вал в движение и колесом, передающим движение на следующий вал соответственно;
F2P, F2T, F4P, F4T – составляющие прогибов, получаемые по программе.
Должны удовлетворятся следующие условия:
,
где m2, m4 – модули зубчатых колес 2, 4.
Далее оцениваем коэффициенты запаса прочности с учетом действия касательных и нормальных напряжений обозначенных N2 и N3. Должно выполнятся условие:
N2 ³1,5…2,5
N3 ³1,5…2,5.
Выполним проверку для шестого вала:
Условия по прогибу следующие:
мм;
мм.
Прогиб под колесом 2:
,
F2P = 0,007254;
F2T = - 0,000025.
мм.
,
F4P = -0,007191;
F4T = 0,000552.
мм.
Таким образом
0,0073 0,06;
0,0072 0,06.
Условие по прогибу выполняется. Сравниваются коэффициенты запаса в опасных сечениях:
,
.
Коэффициенты запаса удовлетворяют требованиям
Выполним проверку для девятого вала:
В первую очередь оценивается суммарный прогиб валов под колесом 2 и 4:
;
.
гдеF2 и F4 – прогиб под колесом, приводящим вал в движение и колесом, передающим движение на следующий вал соответственно;
F2P, F2T– составляющие прогибов, получаемые по программе.
Должны удовлетворятся следующие условия:
,
где m2– модули зубчатых колес 2.
Далее оцениваем коэффициенты запаса прочности с учетом действия касательных и нормальных напряжений обозначенных N2 и N3. Должно выполнятся условие:
N2 ³1,5…2,5
N3 ³1,5…2,5.
Выполним проверку для шестого вала:
Условия по прогибу следующие:
мм.
Прогиб под колесом 2:
,
F2P = 0,007254;
F2T = -0,000025.
мм.
Таким образом
0,0073 0,06.
Условие по прогибу выполняется. Сравниваются коэффициенты запаса в опасных сечениях:
|
.
Коэффициенты запаса удовлетворяют требованиям
Расчет шпиндельного узла
Определение вылета консоли шпинделя
По технической литературе [9], исходя из максимального диаметра сверления, по ГОСТ 25557-82 выбираем 4 конус Морзе. По ГОСТ 2848-75 выписываем для данного конуса Морзе основные геометрические размеры конца шпинделя: вылета консоли – а и диаметра переднего конца шпинделя – D1:
Для 4 конуса Морзе D1=60мм, а=188.
Определение жесткости шпинделя
По указанию преподавателя принимаем жесткость шпинделя jшп =20Н/мкм.
Определение диаметра шпинделя под передней опорой
По номограмме [7] ориентировочно определяем оптимальный диаметр шпинделя dопт и коэффициент расстояния между опорами Копт. При жесткости шпинделя jш = 20 Н/мкм и вылете консоли а = 188 мм, Копт = 2,5; dопт = 50 мм.
Расстояние между опорами шпинделя определим из соотношения:
мм.
Выбор подшипников
По стандарту норм точности и жесткости [9] определяем радиальное биение шпинделя: Δ = 6 мкм.
мкм.
Схема биения шпинделя (векторы биения опор направлены в разные стороны)
Рисунок 6
Допускаемое радиальное биение подшипников передней опоры можно определить по формуле:
,
Где Δ – допускаемое радиальное биение переднего конца шпинделя, Δ = 6 мкм;
а – вылет консоли шпинделя, а = 188 мм;
b – расстояние между опорами шпинделя, b = 470 мм;
мкм.
Допускаемое радиальное биение подшипников задней опоры:
,
.
По радиальному биению дорожки качения внутреннего кольца подшипника [15] подбираем класс точности подшипников:
|
– для передней опоры – класс точности 2, δА = 2,5 мкм;
– для задней опоры – класс точности 4, δВ = 5 мкм.
Поскольку точность подшипника в передней опоре меньше требуемой, необходимо применить специальную сборку. Для этого измеряется биение всех подшипников шпинделя, в месте максимального биения ставится отметка на торце кольца. Шпиндель собирают так, чтобы векторы биения в опорах были направлены в одну и ту же сторону.
Схема биения шпинделя (векторы биения опор направлены в одну сторону)
Рисунок 7
В этом случае биение можно определить по формуле:
,
где δА – радиальное биение подшипников передней опоры, δА = 2,5 мкм;
δВ – радиальное биение подшипников задней опоры, δВ = 5 мкм;
mА – число подшипников в передней опоре, mА = 3;
mВ – число подшипников в задней опоре, mВ = 2;
а – вылет консоли шпинделя, а = 188 мм;
b – расстояние между опорами шпинделя, b = 470 мм;
мкм.
Полученное биение не превышает допустимой погрешности опор.
4. Краткое описание станка в целом и подробное описание конструкции привода подач
Вертикально-сверлильный станок предназначен для выполнения операций сверления, рассверливания, зенкерования, зенкования, развёртывания отверстий в различных деталях, а также для торцевания и нарезания резьб машинными метчиками в условиях индивидуального и серийного производства. На станке обрабатываются детали сравнительно небольших размеров и веса.
Технические характеристики станка | |
Наибольший диаметр сверления | 35 мм |
Пределы частот вращения шпинделя в минуту | 63 –1000 |
Пределы величин продольных подач | 0,18-1,4 |
Мощность главного движения электродвигателя | 5 кВт |
|
Несущей системой станка является колонна. Колонна расположена на основании станины. В верхней части колонны расположен главный электродвигатель с коробкой скоростей. На колонне расположены направляющие, по которым перемещается шпиндельная бабка с коробкой подач и подъемным механизмом. На основании станины установлен стол, на который устанавливается обрабатываемая деталь и закрепляется в машинных тисках или в специальных приспособлениях. Режущий инструмент в зависимости от формы его хвостовика закрепляется в шпинделе станка при помощи патрона или переходных втулок. Наличие электрореверса, управляемого как автоматически, так и вручную, обеспечивает возможность нарезания резьбы при ручном подводе и отводе метчика.
Коробка подач вертикально-сверлильного станка изображена на чертеже 06.С.03.15.01.000.ВО. Она позволяет сообщить шпинделю 7 различных подач.
Движение подачи заимствуется от шпинделя V. Движение передается через шестерни 30-34 и 21-30 на вал VI, коробку подач с передвижными блоками, предохранительную муфту, вал Х, червячную передачу 1-47, вал ХI и реечную передачу гильзе шпинделя.
От вала VI две скорости вращения сообщаются валу VII, на котором жестко закреплены шестерни 45, 50, 39 и 26. От вала VII четыре скорости вращения передаются валу VIII, на котором расположен переключаемый двойной блок и жестко закреплены шестерни 40 и 21. От вала VIII восемь скоростей вращения передается валу IX.
Теоретически коробка подач обеспечивает 8 скоростей вращения, однако, как видно из рисунка 1, одна из них повторяющаяся, поэтому станок имеет только 7 различных величин подач.
От вала IX через кулачковую муфту движение сообщается валу X, на котором закреплен червяк. Червячное колесо 47 расположено на одном валу с реечной шестерней 14, находящейся в зацеплении с рейкой, нарезанной на гильзе шпинделя. Муфта служит для предохранения механизма подач от поломок при перегрузках, а также для автоматического выключения подачи при работе по упорам.
Валы VI – IX снабжены шлицами. Закрепление неподвижных зубчатых колес на валах VII, VIII в осевом направлении осуществляется с помощью пружинных упорных колец и втулок. В опорах валов применены шариковые радиальные однорядные подшипники. Колесо 30 на валу VI установлено консольно и закреплено на нем с помощью шпонки. Каждый из валов коробки подач имеет одну фиксированную и одну плавающую опору. Подшипник фиксированной опоры выполнен со стопорной канавкой под упорное кольцо, препятствующее осевым перемещениям и удерживаются круглой гайкой с отверстиями на торце под ключ, которая стопорится стопорной многолапчатой шайбой. Подшипник плавающей опоры не закреплен наружным кольцом в осевом направлении и допускает перемещение вала при тепловом расширении.
Для переключения передач используется однорукояточный механизм, изменение величины подачи происходит при помощи передвижения рукоятки в двух направлениях. Вращением рукоятки, которая закреплена на валу, свободно перемещающегося внутри полого вала, движение передается через зубчатое колесо 48 на зубчатый диск 48. Диск имеет два торцовых криволинейных паза, которые расположены по разные стороны диска. В криволинейные пазы диска входят ролики, установленные на качающихся рычагах. Эти рычаги при вращении диска поворачиваются на определенный угол относительно своих осей в зависимости от кривизны пазов. Сухари, смонтированные на концах рычагов, входят в пазы вилок. Вилки сидят на направляющих скалках и входят в кольцевые выточки блоков шестерен и перемещают их в требуемое положение для данной величины подачи. При продольном перемещении рукоятки, рейка на конце вала зацепляется с колесом, затем через зубчатое колесо и рейку движение передается на вилку, которая перемещает двойной блок.
Втулка имеет по периферии 8 V-образных канавок, в которые входит фиксатор, подпираемый пружиной. Натяжение пружины регулируется резьбовой пробкой. На валу рукоятки также имеется одна V-образная канавка, регулирующая величину хода в продольном направлении. На передней части втулки нанесены цифры величин подач. Стрелка на втулке указывает величину подачи.
Передаточные отношения при вращении вала рукоятки, 1:1, следовательно, одному обороту рукоятки соответствует один полный оборот диска.
Передний конец шпинделя выполнен по ГОСТ 2848-75 – конец шпинделя сверлильных станков. В передней опоре шпинделя установлены три подшипника: два подшипника серии 110 ГОСТ 8338-75 шариковые радиально однорядные и шариковый упорный одинарный подшипник серии 8210 ГОСТ 6874-75. Передняя опора, как и задняя, выполнена фиксированной.
Задняя опора шпинделя состоит из подшипника серии 110 ГОСТ 8338-75 шарикового радиально однорядного и шарикового упорного одинарного подшипника серии 8210 ГОСТ 6874-75. Регулировка задней опоры осуществляется с помощью круглой гайки с отверстиями на торце под ключ. Через втулку гайка воздействует на кольцо шарикового упорного одинарного подшипника. Кольцо смещается по шейке, деформируясь в осевом направлении, и выбирает зазор между дорожкой и телами качения. Величина максимального натяга устанавливается упорной втулкой.
Поскольку точность подшипников в передней опоре меньше требуемой, шпиндель необходимо собирать так, чтобы векторы биения в опорах были направлены в одну и ту же сторону.
Список литературы
1. Расчет технической характеристики металлорежущих станков. Методические указания к курсовому и дипломному проектированию. Составитель Гомельский М. В. 1992.
2. Проверочный расчет на прочность зубчатых передач на ПЭВМ. Методические указания к курсовому и дипломному проектированию. Составитель Гомельский М. В. 2000.
3. Расчет двухопорных валов на ПЭВМ с учетом деформации опор. Методические указания к курсовому и дипломному проектированию. Составитель Гомельский М. В. 2000.
4. Кучер А. М., Металлорежущие станки. Изд. 2-е. “Высшая школа”, – М.: Машиностроение, Ленинград 1972.
5.Перель Л. Я., Филатов А. А. Подшипники качения: Расчет, проектирование и обслуживание опор: Справочник. –2-е изд., перераб. и доп. – М.: Машиностроение, 1992. – 608 с.: ил.
6.Расчет и конструирование станков. Курсовое и дипломное проектирование: Учеб. Пособие / Н.С. Ачеркан, В.Э. Пуш. – Машгиз, 1952.
7.Альбом иллюстраций к лекционному курсу по дисциплине “РиКС”. / Под ред. М.В. Гомельского, 2003, стр. 16.
8.ГОСТ 2848 – 75. Станки металлорежущие. Концы шпинделей сверлильных и фрезерных станков. Основные и присоединительные размеры.
9.Анурьев В.И. Справочник конструктора-машиностроителя: В 3-х т. – 5-е изд., перераб. и доп. – М.: Машиностроение, 1980. – 557 с., ил.