Пункт 1. Равномерная сходимость несобственных интегралов, зависящих от параметра




При рассмотрении теории интегралов, зависящих от параметра, в случае несобственных интегралов особую роль играет понятие равномерной сходимости. Выясним это понятие сначала для несобственных интегралов первого рода (НИЗП-1), затем для интегралов второго рода (НИЗП-2).

Пусть функция определена и непрерывна на некотором прямоугольнике и при любом фиксированном существует несобственный интеграл, зависящий от параметра, этой функции на любом промежутке . Тогда интеграл сходится и равен

.

В этом случае называют несобственным интегралом первого рода (НИЗП-1).

Утверждение о том, что сходится при каждом означает следующее: при каждом фиксированном

.

Следовательно,

или .

Это значит, что для каждого по любому можно указать число такое, что если , то . Важно заметить, что зависит и от ,и от : . Если же для любого можно указать число , зависящее только от , такое, что при выполняется для , то в этом случае называется равномерно сходящимся относительно параметра .

Теперь сформулируем критерий Коши для равномерной сходимости для нашего случая следующим образом:

Теорема 1. (критерий Коши равномерной сходимости для НИЗП-1). Для того чтобы интеграл сходился равномерно по переменной на промежутке , необходимо и достаточно, чтобы выполнялась цепочка

, .

Рассмотрим достаточные признаки равномерной сходимости.

Теорема 2. (признак Вейерштрасса равномерной сходимости НИЗП-1). Пусть функция определена и непрерывна на прямоугольнике и удовлетворяет условиям:

1. непрерывна по переменной ,

2. существует функция , что ,

3. - сходится.

Из этого следует, что сходится равномерно по .

Доказательство.

В соответствии с условием 3) критерия Коши о сходимости несобственных интегралов 1-го рода от функции одной переменной имеем:

(1)

Тогда при тех же , что и в цепочке, получаем

.

А отсюда по теореме 1 следует равномерная сходимость интеграла .

Ч. т. д.

Замечание.

При выполнении условий теоремы 2 говорят, что функция имеет интегрируемую мажоранту или что интеграл мажорируется сходящимся интегралом .

Следствие.

Пусть выполняются следующие условия:

1. функция определена и непрерывна по ;

2. функция ограничена на прямоугольнике ;

3. интеграл сходится, тогда следует, что

сходится равномерно по .

Обозначим через и возьмем в качестве , а в качестве функции . Тогда, исходя из теоремы 2, получим цепочку (1).

Совершенно аналогично вводится понятие равномерной сходимости несобственных интегралов второго рода (НИЗП-2).

Пусть функция определена в области (a,b,c – конечные числа). Пусть при несобственный интеграл сходится. В этом случае будет представлять собой функцию переменной (параметра) , определенную в промежутке . Утверждение, что несобственный интеграл сходится при , означает следующее. При каждом фиксированном интеграл

(здесь ). Это значит, что для каждого из по любому можно указать такое, что при условии выполняется . Важно отметить, что число выбирается по , и для каждого оно будет своим, другими словами, зависит и от , и от : . Если же можно указать такое , зависящее только от , такое, что при выполнении условия будет верно сразу для всех , несобственный интеграл называется равномерно сходящимся относительно параметра. Короче говорят, интеграл называется равномерно сходящимся по переменной на , если он сходится при и выполняется цепочка .

Для НИЗП-2 справедливы теоремы аналогичные т.1 и т. 2.

Теорема 3. (критерий Коши равномерной сходимости НИЗП-2). Для того чтобы НИЗП-2 равномерно сходился по необходимо и достаточно, чтобы:

, .

Теорема 4. Пусть функция определена в области и удовлетворяет следующим условиям:

1. функция непрерывна по , при ;

2. существует такая функция , что , и .

3. - сходится

НИЗП-2 сходится равномерно по на .

Доказательство проводится аналогично доказательству теоремы 2.

Пример. Исследовать на равномерную сходимость интеграл .

Для определения равномерной сходимости необходимо проверить выполнение всех условий теоремы 2.

1. определена и непрерывна в области ;

2. существует функция , , для любого ;

3. , то есть сходится.

Так как все условия выполнены, то интеграл сходится равномерно относительно на любом промежутке .




Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-12-28 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: