Пункт 2. Предельный переход под знаком интеграла. Непрерывность интеграла как функции параметра




Глава 1. Собственные интегралы, зависящие от параметра

Пункт 1. Понятие интеграла, зависящего от параметра

Для того чтобы дать определение интеграла, зависящего от параметра, введем функцию . Пусть эта функция будет определена на некотором множестве , где и , то есть в результате получится множество . Если функция непрерывна в D, то тогда имеет смысл интеграл , где x принадлежит некоторому конечному или бесконечному промежутку , значит, интеграл может быть несобственным.

На основании этого можно дать определение интеграла, зависящего от параметра.

Определение.

Интеграл называется интегралом, зависящим от параметра, если интегрируема на промежутке при любом фиксированным , где .

Следовательно, представляет собой функцию переменной (параметра) , определенную в промежутке . Возможно также существование интеграла при фиксированном , тогда он будет представлять собой функцию переменной (параметра) , определенную в промежутке . Обозначается она так , так что .

Основная задача будет состоять в том, чтобы, зная свойства функции , получить информацию о свойствах функции . Эти свойства имеют многообразные применения, особенно при вычислении несобственных интегралов.

Пример. Найти интеграл от функции ,

Функция непрерывна на отрезке при любом фиксированном , а значит, она интегрируема. Тогда

.


Пункт 2. Предельный переход под знаком интеграла. Непрерывность интеграла как функции параметра

Определение.

Пусть - это предельная точка множества .Функция называется равномерно сходящейся к функции при по переменной , если выполняются следующие условия:

1. для при существует конечная предельная функция ;

2. . (1)

Замечание 1.

В цепочки (1) зависит только от и не зависит от , а неравенство выполняется при любых одновременно.

Замечание 2.

Если , то в цепочке (1) неравенство следует заменить на ().

Теорема 1 (признак сходимости). Если функция определена на множестве , то для того, чтобы она имела предельную функцию и сходилась к ней равномерно необходимо и достаточно, чтобы выполнялась цепочка

 

Докажем теорема так.

Необходимость. Пусть функция равномерно сходится. Если заменим в определении на и выберем соответственно , а затем возьмем два значения и из так, чтобы выполнялись условия и . В результате получим и откуда следует последнее неравенство в цепочке .

Достаточность. Теперь пусть существует предельная функция . Нужно доказать равномерную сходимость функции к предельной функции. Для этого совершим переход к пределу в неравенстве при , получается . Что и подтверждает равномерную сходимость к функции .


Теорема 2 (о непрерывности предельной функции). Если функция при любом фиксированном непрерывна на и равномерно сходится к предельной функции по переменной при , то функция также непрерывна на .

Легко обобщается теорема Дини: если функция непрерывна для любого фиксированного на и при возрастании функция, монотонно возрастая, стремится к предельной функции , то сходится к равномерно.

Теорема 3 (предельный переход по параметру под знаком интеграла). Если функция непрерывна при постоянном значении на и сходится равномерно по переменной к предельной функции при , то тогда имеет место равенство

(2)

Доказательство.

Непрерывность следует из теоремы 2, значит, она интегрируема на отрезке . В силу равномерной сходимости к выполняется . Тогда при тех же и имеем:

откуда следует , что доказывает формулу (2).

Замечание 3.

Равенство (2) можно записать и в другом виде

. (2`)

Следствие 1.

Если функция при постоянном непрерывна по и при возрастании стремится, монотонно возрастая, к непрерывной предельной функции , то справедливы формулы (2) и (2`).

В предположении, что область представляет собой конечный промежуток , рассмотрим вопрос о непрерывности функции .

Пример (№3713 (в)). Найти .

1. функция непрерывная функция на . Функции и также непрерывны на .

2. непрерывная функция (т.4 и сл.2) в промежутке , значит

3. .

Теорема 4 (о непрерывности интеграла как функции параметра). Пусть функция определена и непрерывна в прямоугольнике , тогда интеграл будет непрерывной функцией от параметра в промежутке .

Доказательство.

Так как непрерывна на замкнутом множестве, то по теореме Кантора она равномерно непрерывна на данном прямоугольнике . Возьмем любое и зафиксируем . Тогда нашему значению будет соответствовать , такое, что для любых двух точек , принадлежащих , из неравенств и , будет следовать . Положим , , где , - любые из , и , где . Тогда получим

. Это означает, что функция равномерно стремится к . В таком случае по теореме 3 , а уже отсюда следует равенство , то есть наша функция непрерывна на .

Замечание 4. Совершенно аналогично доказывается теорема для , где .

Следствие 2. Если непрерывна на прямоугольнике , то .

Пример. Найти .

1. непрерывна на

2. тогда по теореме 4. и следствию 2 получаем




Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-12-28 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: