Преобразование треугольника в эквивалентную звезду.




Лекция III.

 

Преобразование схем электрических цепей.

 

Целью преобразования электрических цепей является их упрощение, это необходимо для простоты и удобства расчета.

Одним из основных видов преобразования электрических схем является преобразование схем со смешанным соединением элементов. Смешанное соединение элементов – это совокупность последовательных и параллельных соединений, которые и будут рассмотрены в начале данной лекции.

Последовательное соединение.

На рис.20 изображена ветвь электрической цепи, в которой последовательно включены сопротивления R1, R2,…,Rn. Через все эти сопротивления проходит один и тот же ток I. Напряжения на отдельных участках цепи обозначим через U1, U2,…, Un.

 

 

Рис.20. Последовательное соединение.

 

По второму закону Кирхгофа напряжение на ветви

U=U1+U2+…+Un= IR1+IR2+…+IRn=I (R1+R2+…Rn)=IRэкв. (23)

Сумма сопротивлений всех участков данной ветви

Называется эквивалентным последовательным сопротивлением.

Параллельное соединение.

На рис.21 изображена схема электрической цепи с двумя узлами, между которыми включено n параллельных ветвей с проводимостями G1, G2,…, Gn. Напряжение между узлами U, оно одинаково для всех ветвей.

 

 

Рис.21. Параллельное соединение (показать преобразованное).

 

По первому закону Кирхгофа ток общей ветви

I=I1+I2+…+In=G1U+G2U+…+GnU=U (G1+G2+…+Gn)=UGэкв. (24)

Сумма проводимостей всех ветвей, соединенных параллельно

называется эквивалентной проводимостью.

В случае параллельного сопротивления двух ветвей (n=2) обычно пользуются выражениями, в которые входят сопротивления и .

 

 

Эквивалентное сопротивление двух параллельно соединенных ветвей равно:

 

.

Смешанное соединение.

На рис.22 показано смешанное соединение электрической цепи:

 

 

Рис.22. Смешанное соединение.

 

Эта схема легко приводится к одноконтурной. Эквивалентировать схему обычно начинают с участков наиболее удаленных от входных зажимов. Для схемы рис.22 – это участок e-A. Сопротивления R5 и R6 включены параллельно, поэтому необходимо вычислить эквивалентное сопротивление данного участка по формуле

Для понимания полученного результата можно изобразить промежуточную схему (рис.23).

 

Рис.23

 

Сопротивления R3, R4 и R/экв. соединены последовательно, и эквивалентное сопротивление участка c-e-f-d равно:

Rэкв.=R3+ R/экв.+R4.

После этого этапа эквивалентирования схема приобретает вид рис.24.

 

Рис.24

 

Затем находим эквивалентное сопротивление участка c-d и суммируем его с сопротивлением R1. Общее эквивалентное сопротивление равно:

.

Полученное сопротивление эквивалентно сопротивлению (рис.25) исходной схемы со смешанным соединением. Понятие “эквивалентно” означает, что напряжение U на входных зажимах и ток I входной ветви остаются неизменными на протяжении всех преобразований.

 

Рис.25

 

Преобразование треугольника в эквивалентную звезду.

Преобразованием треугольника в эквивалентную звезду называется такая замена части цепи, соединенной по схеме треугольником, цепью, соединенной по схеме звезды, при которой токи и напряжения в остальной части цепи сохраняются неизменными.

Т.е., под эквивалентностью треугольника и звезды понимается то, что при одинаковых напряжениях между одноименными зажимами токи, входящие в одноименные выводы, одинаковы.

 

Рис.26. Преобразование треугольника в звезду.

 

Пусть R12; R23; R31- сопротивления сторон треугольника;

R1; R2; R3- сопротивления лучей звезды;

I12; I23; I31- токи в ветвях треугольника;

I1; I2; I3- токи, подходящие к зажимам 1, 2, 3.

Выразим токи в ветвях треугольника через подходящие токи I1, I2, I3.

По второму закону Кирхгофа сумма падений напряжений в контуре треугольника равна нулю:

I12R12+I23R23+I31R31=0

По первому закону Кирхгофа для узлов 1 и 2

I31=I12-I1; I23=I12+I2

При решении этих уравнений относительно I12 получим:

Напряжение между точками 1 и 2 схемы треугольника:

Напряжение между этими же точками схемы звезды равно:

U12=I1R1-I2R2.

Т.к. речь идет об эквивалентном преобразовании, то необходимо равенство напряжений между данными точками двух схем, т.е.

Это возможно при условии:

(25)

Третье выражение получено в результате круговой замены индексов.

Исходя из выражения (25) формулируется следующее правило:

Сопротивление луча звезды равно произведению сопротивлений сторон треугольника, прилегающих к этому лучу, деленному на сумму сопротивлений трех сторон треугольника.

Выше было получено выражение для тока в стороне 1-2 треугольника в зависимости от токов I1 и I2. Круговой заменой индексов можно получить токи в двух других сторонах треугольника:



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: