Из всех металлов человеку нужно больше всего железа, особенно много нужно стали, чугуна поменьше.
Когда машин еще было немного - в прошлом веке, - на каждого человека приходилось около килограмма железа в год.
А теперь, если сосчитать, сколько на земле живет людей и сколько в год выплавляется чугуна и стали, то окажется, что на каждого человека значит, и на тебя - приходится столько железа, что тебе и не поднять: больше половины того, что ты сам весишь.
Ты можешь возразить: ни в комнате, ни в классе не найдешь столько железных вещей, чтобы на каждого так много выходило.
Согласен. Только ты не подумал, сколько нужно железа, чтобы сделать все нежелезные вещи, которыми пользуются люди. И не только вещи. Сколько в куске хлеба, который ты съел за завтраком, железа? Скажешь, нисколько? А вот давай сообразим.
Пахали землю стальным плугом, а вел плуг по полю трактор, сделанный из чугуна и стали. Затем пошли в ход железные сеялки. А к осени прибыл на поле комбайн - снимать урожай, молотить зерно. Комбайн большой. Чтобы его построить, нужно много стали.
Повезли в грузовиках зерно к железной дороге. Мотор грузовика, его колеса, и рессоры - все стальное. А дорога не зря называется железной рельсы стальные, колеса по ним катятся стальные, тепловоз из стали и чугуна...
Видишь, сколько нужно железа, чтобы ты кусок хлеба съел? Не сосчитаешь! Нет ни одной вещи вокруг тебя, которая сделана без помощи железа. Для твоей парты деревья валили в лесу стальными топорами и пилами. На доски их резали тоже пилами. Из досок все части для парты готовили стальными инструментами. И какую вещь ни возьмешь - если сама она не железная, - железо участвовало в ее изготовлении и перевозке.
|
Богатырский металл - железо! Впрочем, погоди, так ли это? Ведь чистое железо - мягкий металл, сам по себе он ни на что не пригоден. Но люди научились изготовлять из железа могучий металл - сталь.
А прибавив к стали немного кремния и марганца, такого хрупкого, что из него ничего не сделаешь, получают металл еще крепче простой стали. Видишь, я был прав, когда в начале книжки говорил, что не все металлы сами по себе богатыри. Силачами их делают люди.
Железобетон
Идешь ты мимо большого высокого дома и можешь не догадаться, что он на железе держится. Железа не видно. Стены как стены - серые, если дом не оштукатурен и не покрашен.
Я хочу тебе рассказать, откуда взялись дома, которые держатся на железе.
Жил в Париже садовник - это было в прошлом веке. Как-то остался он без денег. А у него в оранжерее были пальмы. Можно бы их продать, получить деньги, да нужны кадки. У пальм очень крепкие корни; они, вырастая, непрочную кадку разламывают. Обычно делали кадки из крепких дубовых досок, а когда корни вырастали и разламывали кадку, пальму пересаживали в другую кадку - побольше.
Но у садовника не было ни дубовых досок, ни денег, чтобы их купить. А был у него дома цемент. Знаешь, что это такое? Перемолотые камни с глиной или перемолотый глинозем. Если цемент смешать с водой, получается тесто, которое на воздухе твердеет. Когда строят кирпичный дом, то кирпич с кирпичом скрепляют цементом. А если к цементу прибавить вместе с водой и песок, то получится, когда эта смесь затвердеет, прочный строительный материал - бетон. Из бетона можно дома строить: он крепче кирпичей.
|
Вот наш садовник и решил сделать бетонные кадки. Неудачно получилось. Они были очень тяжелыми и легко раскалывались при падении. Тогда садовник еще стянул сверху бетонную кадку железными обручами и поперек железные прутья воткнул. Вот тогда вышла очень крепкая кадка. Только безобразная: серый бетон в сетке из железа, которое на воздухе скоро ржавело. Кто же купит красивую пальму в такой уродливой кадке? Садовник тогда вот какую хитрость придумал: он сперва сделал железную сетку, а потом залил ее с обеих сторон бетоном так, что сетка внутри бетона осталась.
Кадка получилась такая прочная, каких еще никогда садовник не видел. Все удивлялись. Слой бетона был совсем тонкий, а кадку хоть на каменный пол бросай - не расколется. И корни пальм не могли сломать кадку - они в ней послушно сгибались.
Попробовал садовник другие вещи таким же способом делать, все получались на редкость прочными. Но он всякие пустяки изготовлял и не догадался, что случайно сделал одно из самых важных изобретений века.
Когда знающие люди изучили, почему так необыкновенно прочны кадки садовника, оказалось, что бетон и железо словно нарочно созданы, чтобы дополнять друг друга. Железо хорошо сопротивляется ударам, но легко гнется. Бетон как раз наоборот - не гнется, зато не выносит ударов и сильного давления. Потому так легко раскалывались у садовника бетонные кадки. А железо с бетоном и не гнется и не ломается.
Но это еще не все. Ты, вероятно, знаешь, что все вещества от тепла расширяются, а от холода сжимаются. Но неодинаково. Одни вещества расширяются и сжимаются больше, чем другие. А бетон и железо расширяются от тепла и сжимаются от холода одинаково. Это делает материал очень прочным. Назвали его "железобетон".
|
У него много важных достоинств. Например, при пожаре железные сооружения размягчаются, гнутся и обрушиваются. А железобетон огнестоек - он выдерживает высокую температуру огня и холодную струю воды, которой тушат пожар. Кроме того, железо, покрытое бетоном, не ржавеет, потому что бетон не пропускает воду.
Когда все это узнали, стало понятным, что из железобетона надо делать не цветочные кадки, а самые большие и прочные сооружения: здания для заводов, высокие дома, большие мосты и плотины.
Так случайно парижский садовник создал материал, которым и до сих пор пользуются для постройки самых прочных сооружений.
Железо, чугун, сталь и все сплавы стали с другими металлами называют черными металлами. Все остальные металлы - цветными.
Сейчас я тебе расскажу об одном из самых важных цветных металлов.
* МЕДЬ И ЕЕ ДРУЗЬЯ *
Ты, конечно, видел медные вещи, может быть, кастрюли, хотя теперь их редко делают из меди. И уж наверное видел медный электрический провод.
Медь легко узнать по цвету - она рыжевато-красная.
Судьба у меди не простая.
Этот металл первобытные люди знали намного раньше, чем железо. Медь иногда попадалась им также, как и золото, самородками - это были куски металла, не скрытые в руде, а свободные от минералов, как бы сами родившиеся.
В то время у людей было только одно орудие труда - каменный топор. И вот нашли они медь. Попробовали, что крепче - камень или медь. Оказалось, что камень крепче.
Медь - металл довольно мягкий, непрочный. А что первобытные люди пробовали ее крепость, мы знаем: нашли куски меди, обрубленные каменными топорами. Но все же из меди тоже стали делать топоры, может быть и оружие для охоты. Делали медные топоры каменными топорами! И, в общем, от меди первобытному человеку пользы было бы немного. От чистой меди!
Но случилось так, что древним людям попалась медь в сплаве с другим металлом. Он называется
Олово
Если ты собираешь металлический лом, то олово тебе, наверное, очень часто попадается - из него делают консервные банки. И на это уходит половина всего олова, какое добывают.
Ты, чего доброго, спорить со мной станешь - скажешь, что консервные банки жестяные, а не оловянные.
А я тебя спрошу: есть такой металл - жесть? Вот ты и попался. Такого металла нет. Жестью называют тонкие листы железа, с обеих сторон покрытые оловом.
Кто же из нас прав? Да, в общем, оба правы. Банки действительно жестяные, а в жести самое важное - олово.
Добывать олово нетрудно. Оно плавится при невысокой для металлов температуре - немного больше двухсот градусов. Его в древности просто на угольных кострах выплавляли из руды.
Теперь олову много дела нашли. Но с чистым оловом надо обращаться осторожно - это металл нежный. Он на морозе может простудиться. А простуда для него - болезнь смертельная, ее даже называют оловянной чумой. Заболевшее олово из блестящего и белого становится тускло-серым, а потом рассыпается в порошок.
И случилось раз, что из-за этой оловянной чумы погибли отважные люди. Английский путешественник, капитан Скотт, отправился в экспедицию к Южному полюсу. Там еще никто из людей тогда не бывал. По антарктическому материку участники экспедиции везли грузы сперва на санях с моторами, потом на лошадях, потом на санках, в которые были впряжены собаки, а потом несли на себе. По дороге они оставляли склады с продовольствием и керосином на обратный путь. Путешественники обогревались керосиновыми печками и на керосиновых примусах варили пищу.
С огромным трудом добралась экспедиция к полюсу. Там Скотт нашел записку: оказалось, что его на месяц опередил норвежский путешественник Амундсен.
А на обратном пути Скотт и все члены его экспедиции погибли. Главной причиной их гибели было то, что со складов исчез керосин. Скотт не мог понять, куда он девался. Банки были почти пустые. Холод все усиливался, согреваться было нечем. Капитан Скотт и его товарищи замерзли.
Потом только дознались, что случилось. Банки с керосином были запаяны оловом. На морозе олово "заболело", разрушилось, и топливо вытекло. Тогда еще не знали, что олово не выносит мороза.
А само олово, как я говорил, люди знают почти так же давно, как медь.
Вот что, очевидно, произошло с первобытным человеком. Разложил он где-то костер, а когда костер потух, то под золой оказался металл - такой крепкий, что каменным топором его не разрубить. Откуда он взялся? Костер случайно был разложен на руде, в которой были два металла - медь и олово. Такие руды бывают. И олово соединилось с медью. Как ты помнишь, олово легко плавится. И сплав получился очень крепкий - крепче, чем медь и олово сами по себе. Называется этот богатырский сплав
Бронза
Теперь понятно, почему олово вмешалось в наш с тобой разговор о меди. Оно имело на это право. Медь без олова для древнего человека была почти бесполезна, а в сплаве с оловом изменила его жизнь, помогла стать великаном.
Выброшены были каменные топоры, на смену им пришли бронзовые орудия для труда и охоты. Кончился каменный век (это так говорится - "век", на самом деле это время длилось много тысячелетий). Начался бронзовый век, он продолжался, пока люди не научились получать из руды железо. А тогда начался век железный.
Смотри, как получается. Чистое железо, в общем, ни к чему. Мягкий металл, из которого ничего полезного не сделаешь. А в сплавах с углеродом и другими металлами он стал необходим людям. Просто представить себе нельзя, как бы люди создали без железа сегодняшний наш мир с его книгами, автомобилями, ракетами, летящими в космос, с машинами, которые обрабатывают землю и производят все нужные нам вещи.
И с чистой медью почти нечего было делать. Но вот немного олова попало в медь, и родился сплав, который был так необходим древним, что его именем названа целая эпоха в жизни человечества - бронзовый век.
Бронза потеряла былое величие, когда в нашу жизнь вошло железо.
Перестали мастерить из бронзы топоры - стали делать украшения.
Почти все металлические памятники великим людям, которые ты видишь на улицах городов, многие статуи, украшающие площади и сады, сделаны из бронзы.
Она довольно стойко сопротивляется главному врагу многих металлов кислороду. Только на простоявших сотни лет памятниках появляется зеленый налет. Это работа кислорода. Но он бессилен проникнуть в глубь металла, разрушить бронзу так, как разрушает железо.
Еще не так давно из бронзы делали пушки. Если ты бывал в Московском Кремле, то видел Царь-пушку. Ну, а если не пришлось побывать в Кремле, то, наверное, видел ее на фотографиях. Это огромная пушка, отлитая из бронзы около четырехсот лет назад. Существовали бронзовые орудия еще долго. Только сто лет назад их стали заменять стальными.
Теперь из бронзы делают только некоторые части машин и по-прежнему памятники, художественные статуи.
Гораздо нужнее в наши дни другой сплав. В нем с медью соединен
Цинк
Этот металл часто попадается. Он, вероятно, и дома у тебя есть. Корыта для стирки, ведра часто делают из листов железа, покрытых тонким слоем цинка. Иногда и крыши домов делают из покрытого цинком железа.
Догадался, почему цинком покрывают те железные вещи, которые соприкасаются с водой? Цинк сам не ржавеет и предохраняет железо от ржавчины.
Нередко ты пользуешься цинком и не знаешь, что он у тебя под рукой. Раскрашиваешь картинки - в твоих акварельных красках есть цинк. Помнишь, я уже говорил, что и белила приготовляют из цинка.
Глаза болят - их иногда лечат мазью, в которой есть цинк. Она так и называется цинковой мазью.
Грызешь крепкий сухарь - зубы у тебя не ломаются, потому что и в них есть цинк. В спичечных головках - тоже цинк. Куда только он не забрался!
Но больше всего цинком пользуются для сплава с медью. Этот сплав называется
Латунь
Ее еще в глубокой древности знали. Почти так же вышло, как с бронзой. Прежде получили сплав меди с цинком, а потом чистый цинк. Но чистое олово быстро научились выплавлять, а цинк - с ним тысячи лет возились. То в одной стране найдут способ добывать его из руды, а потом забудут секрет, то в другой ищут наново.
Латунь - золотистого цвета металл - дешевле чистой меди, а во многом ее и заменяет. Из латуни делают посуду, краны, дверные ручки, трубы латунь хорошо сопротивляется ржавчине. Кроме того, она может притвориться золотом: цветом похожа. Поэтому из нее делают дешевые украшения, похожие на золотые.
Снова медь
Десять тысяч лет пользовались люди медью, но только в сплавах - то с оловом, то с цинком. А теперь, в нынешнем веке, и чистая медь понадобилась. Ничего, что она мягкая. Для дела, которое ей нашли, это не помеха.
Дело в том, что медь лучше всех других металлов, лучше стали проводит электрический ток. Поэтому из меди делали электрические провода.
Но так как медь дорога, начали ее заменять и делать провода из других металлов, чаще всего из алюминия.
* РТУТЬ *
Этот металл ты, конечно, знаешь. Он удивителен тем, что при обычной температуре - жидкий. Твердеет ртуть при 39 градусах холода. У Южного полюса, где бывает самый сильный в мире мороз, больше 70 градусов холода, ртутью можно хоть гвозди заколачивать - такая она там твердая.
В старину ртуть называли жидким серебром и еще серебряной водой. Она, правда, по цвету очень похожа на серебро, а блестит даже ярче.
Для чего ртутью пользуются, ты тоже знаешь - для измерения температуры воды, воздуха, тела. Ты помнишь, что металлы, как и другие вещества, от тепла расширяются, а от холода сжимаются. Это обычно незаметно, потому что сжимаются и расширяются они немного. А вот когда ртуть в узкой стеклянной трубочке термометра, тогда видно, как она расширяется от тепла, ползет вверх по трубочке. Опустишь в холодную воду термометр - ртуть сжимается, ползет вниз.
А еще у ртути есть такое свойство: она растворяет многие металлы, в том числе золото. Этим иногда пользуются при добыче золота там, где оно рассыпано в песке очень мелкими крупинками. Растворяют крупинки в ртути, а потом ее выпаривают. На дне сосуда остается слиток золота.
Ртутью и врачи пользуются, например, когда делают пломбы для зубов. Но ею надо пользоваться осторожно - ртуть ядовита. Пожалуйста, если тебе попадут в руки шарики ртути - тяжелые ее капли, которые перекатываются по столу, как живые, - не забудь потом вымыть руки.
Из всех окружающих тебя металлов единственный жидкий - ртуть. А из всех жидкостей ртуть самая тяжелая. Тебе ничего не стоит принести литровую бутылку молока или воды. Она весит около одного килограмма. А нальешь в такую бутылку ртуть, тебе ее и не поднять. Она будет весить больше тринадцати килограммов.
* РУБИДИЙ И ЦЕЗИЙ *
Ты, вероятно, даже не слыхал о таких металлах. А они очень интересные и нужные нам. Эти металлы похожи друг на друга, как близнецы. Оба они рубидий и цезий - металлы буйные и капризные. Оба редкие, да к тому же попадаются в самых неожиданных местах. Их впервые открыли в воде лечебного источника.
Цезий такой мягкий, что его можно ножом резать. Возьмешь в руку - он расплавится. Это самый легкоплавкий металл: он становится жидким при температуре 28 градусов. Но в руку-то его взять непросто - сразу загорится и обожжет тебя. Вот в чем буйство цезия: он так жадно соединяется с кислородом воздуха, что сам себя губит. Вспыхивает на воздухе и сгорает. Железу, ты помнишь, тоже вреден кислород. Но оно заболевает ржавчиной и гибнет постепенно, годами может болеть. А цезий и рубидий в чистом виде гибнут на воздухе сразу.
Как же их хранить, может быть, в воде? И не пробуй, еще хуже получится. В воде цезий и рубидий буйствуют пуще, чем на воздухе. Они не только сами загораются, они еще и воду взрывают!
Ты спросишь: разве вода может взорваться? Сама вода, конечно, не взрывается. Но она состоит из двух газов - кислорода и водорода. А водород газ не только горючий, но и взрывчатый.
Цезий и рубидий разлагают воду и взрывают водород. Как же успокоить рубидий и цезий? На воздухе они сразу загораются, а в воду опустишь раздается взрыв. Оказывается, совершенно безопасно хранить цезий и рубидий в горючем керосине! Только там эти капризные металлы ведут себя спокойно.
А оба они - цезий и брат его рубидий - для нынешней техники очень важны. Если умеючи с ними обращаться, они не буйствуют, а работают.
Прежде всего использовали их свойство жадно соединяться с кислородом. Когда делают радиолампы, надо, чтобы в них и следов воздуха не было. Насосом не удается выкачать воздух так, чтобы его совсем не осталось. Выкачав воздух из лампы насосом, остаток поручают забрать крупинке цезия. Она сразу сгорит вместе с остатком воздуха.
Но это не главная работа рубидия и цезия. У них есть еще одно удивительное свойство: как только попадут на свет - все равно солнечный или электрический, - начинают вырабатывать электрический ток. Чем больше света, тем сильнее ток, чем меньше света, тем он слабее. Это свойство сразу откликаться силой тока на изменение силы света - было очень важной находкой для техники. Оно помогло создать вещи, которые еще недавно показались бы волшебными - например, телевизор. А еще этим свойством цезия и рубидия пользуются, создавая заводы-автоматы, которые работают без людей. Вот какими нужными металлами оказались рубидий и цезий.
У них есть два близких родственника, тоже металла, не редкие, но
Такие же буйные - калий и натрий
Оба эти металла, как рубидий и цезий, загораются в воде и поджигают водород. Волшебного свойства вырабатывать электрический ток на свету у них нет. Они другим для нас важны.
Калий в соединении с различными веществами - одно из лучших удобрений для полей: помогает выращивать хорошие урожаи.
А нам с тобой калий необходим для жизни. Без него сердце не могло бы биться, да и все мускулы были бы дряблыми, никакой в них не осталось бы силы. Но ты не беспокойся. У нас в теле калий от рождения, а запасы его пополняются едой - калий есть и в мясе и во всех овощах.
И натрий мы едим каждый день. Ты, пожалуй, спросишь: как же есть натрий, коли он на воздухе загорается? Правильный вопрос. Вообще непонятным может показаться: как же добывать рубидий, цезий, калий, натрий, как этими металлами пользоваться, если они сразу сгорают?
А дело тут вот в чем: эти металлы в природе никогда не встречаются в чистом виде - всегда соединены с другими веществами, которые цепко держат их и не дают сгорать. Можно каждый из этих металлов освободить от веществ, с которыми они соединены, но тогда их надо держать в керосине, а то сгорят. А чтобы пользоваться ими, нужно опять соединить их с какими-нибудь веществами, которые не дадут им сгореть.
Ну, а как же все-таки мы едим натрий? Тоже, конечно, не чистый, а в соединении с веществом, которое называется хлор. Знаешь, что такое соединение натрия с хлором? Очень трудное у него название, боюсь, ты не запомнишь. Это соединение называется соль. Слыхал такое слово? Ну, шутка шуткой, а всерьез тоже интересно получается. Натрий ядовит, и хлор очень сильный яд. По отдельности они опасны для всего живого, а в соединении не только безопасны, а просто необходимы - без соли ведь жить нельзя. И нашему телу нужно много соли.
Когда кто-нибудь хочет сказать: "Я хорошо знаю этого человека", он часто пользуется поговоркой: "Я с ним пуд соли съел". Как ты думаешь, сколько же надо прожить с человеком, чтобы съесть с ним пуд соли? Всю жизнь? Нет, гораздо меньше. Пуд - это шестнадцать килограммов. А человек съедает в год не меньше восьми килограммов соли. Значит, всего год надо прожить с человеком, чтобы съесть с ним вдвоем пуд соли.
Вот и все про четыре металла, ни на какие другие не похожие, - про рубидий, цезий, калий и натрий.
* СВИНЕЦ *
Это металл темно-серый, даже синеватый. Он тяжелый, но мягкий. Его уже в глубокой древности добывали. Только многих свойств свинца тогда не знали и удивительно неудачно им пользовались. В древнем городе Риме устроили водопровод. Трубы римского водопровода были сделаны из свинца. И никто не догадывался, отчего римляне часто болели и даже умирали раньше, чем жители других городов. Только через несколько веков поняли, что как раз водопровод, которым римляне очень гордились, губил их. Небольшое количество свинца растворялось в воде, которая шла по трубам. А свинец - металл ядовитый. Он медленно отравлял жителей города.
Позже свинцу нашли другое дело, и опять неподходящее. В некоторых городах стали строить дома со свинцовыми крышами. Плохо было жить в таких домах. Свинец очень хорошо проводит тепло. А это значит, что он так же хорошо пропускает холод. Поэтому летом свинцовая крыша так нагревается, что хоть беги из дому, а зимой в доме холодно, как на улице.
Из свинца и белила делали - об этом я уже рассказывал, - они были вредны для здоровья и к тому же от времени темнели. Опять вышло не очень удачно.
Когда изобрели ружья, из свинца стали лить пули - для этого он годился. "Лить" - потому что их литьем изготовляют: заливают расплавленный свинец в формочки. А расплавить свинец можно в простой печке.
Металлу правильное дело находят, когда знают все его свойства. Так и со свинцом. Он оказался очень удобным металлом для многих электрических приборов. И провода в свинцовую рубашку заворачивают, чтобы не портились от сырости. А еще свинец прибавляют в стекло, и тогда получается самый красивый сорт стекла - хрусталь. Ты видел, наверное, хрусталь. В его гранях переливаются всеми цветами радуги лучи света, а легонько щелкнешь его пальцем - звенит.
Для многих книг, которые ты читаешь, как и для всякой другой, свинец тоже поработал. Из свинца вместе с другими металлами - оловом, медью, сурьмой - делают буквы. Их в типографии собирают сперва в строки, потом в страницы, покрывают черной краской и оттискивают на бумаге. Получается страница книги. Этот сплав свинца с оловом, медью и сурьмой так и называют: типографский металл. Тут, кстати, в этом сплаве есть металл, о котором я тебе еще ни слова не сказал,
* СУРЬМА *
Ты уже читал в этой книжке, какие странные бывают металлы: и жидкие, и такие, что в воде и на воздухе загораются. У сурьмы тоже есть свойства, которые делают ее непохожей на другие металлы: хрупкость, непрочность. Можно кусочек сурьмы просто пальцами растереть в порошок. А у расплавленной сурьмы другое редкое качество - в ней почти все металлы растворяются, как сахар в стакане горячего чая.
Чистая сурьма серебристо-белая, а в соединении с разными минералами она бывает то черной, то рыжей. Теперь у сурьмы два главных дела. О первом я уже сказал - она входит в состав типографского металла. Другая важная ее работа - помогать спички зажигать. В состав "терки" - боковой стороны спичечной коробки, о которую чиркают спички, - входит сурьма. Как раз от сурьмы "терка" почти черная.
* УРАН И РАДИЙ *
Просты ли простые вещества?
Помнишь, я говорил в начале книжки, что вся природа, живая и неживая, состоит из девяноста двух простых веществ - элементов. Они называются простыми потому, что из них уже нельзя извлечь никаких других веществ. Из руды можно извлечь металл, а из металла уже ничего не извлечешь - это элемент.
Но не так уж просты эти простые вещества - элементы. Каждый состоит из бесчисленного множества частиц, которые так малы, что их ни в какой прибор не увидишь. Ты, наверное, знаешь, что эти частицы называются атомами.
Люди могли по своей воле распоряжаться элементами - делать из металлов нужные им вещи, научились даже делать вещи из газов, которые есть в воздухе. А из атомов ничего нельзя было сделать. Атомы были не подвластны человеку.
Невидимые лучи
В конце прошлого века ученые сделали очень важные открытия.
Началось все с того, что один ученый положил в шкаф неиспользованную фотографическую пластинку. Она была завернута, как полагается, в черную бумагу, чтобы на нее не попал свет. А сверху лежал камушек. Это была руда металла, о свойствах которого тогда мало знали. Называется этот металл уран.
Через несколько дней ученый на всякий случай проявил эту неиспользованную пластинку и очень удивился: оказалось, что на ней есть снимок - отчетливый портрет того камушка, руды урана, что лежал поверх черной бумаги. Ты ведь знаешь, что фотографический снимок можно сделать только на свету. Откуда же взялся снимок на завернутой в черную бумагу пластинке? Значит, урановая руда, которая лежала поверх черной бумаги, сама испускает какие-то невидимые лучи. Они прошли сквозь бумагу на пластинку.
Волшебный металл
Этот опыт проверили французские ученые Пьер и Мария Кюри. И проверка привела их к новому открытию. Они убедились, что действительно уран испускает невидимые лучи. Но Мария Кюри обнаружила, что в урановой руде есть еще один металл и его излучение в миллион раз сильнее уранового! Волшебный металл назвали радий. А способность некоторых веществ испускать невидимые лучи Мария Кюри назвала радиоактивностью.
Огромного труда стоило получить хоть крупинку чистого радия. Двенадцать лет трудилась над этим Мария Кюри. И не зря. У радия оказались необыкновенные свойства. Он испускал не только невидимые лучи, которые проникали сквозь черную бумагу на фотопластинку, но и видимые: радий светился в темноте. Мало того - он излучал не только свет, но и тепло.
Один ученый положил в карман бутылочку с крупинкой радия. И скоро почувствовал ожог. Это не от тепла был ожог, а от тех невидимых лучей, что испускает радий. Они сквозь стекло и одежду обожгли кожу. Но оказалось, что эти лучи могут и лечить, да еще такую болезнь, от которой тогда совсем не умели спасать людей, - опасные опухоли. Это и стало главной работой радия - лечить опухоли и болезни кожи.
Но как же трудно было добывать этот металл! Радия очень мало в земле. Это бы еще не беда, а то беда, что добыть чистый радий из руды - сложный труд.
Чтобы добыть всего один грамм радия, нужно было: несколько вагонов урановой руды, сто вагонов угля, сто цистерн чистейшей воды и пять вагонов разных химических веществ. Представляешь себе: четыре длиннющих поезда материалов, чтобы добыть крупинку радия.
Неудивительно, что в мире не было ничего дороже этого металла. Один его грамм стоил полмиллиона рублей. Это значит, что за грамм радия надо было заплатить больше двухсот килограммов золота! И за шестьдесят лет удалось во всем мире добыть всего только один килограмм чистого радия.
Что же такое радиоактивность?
Откуда берутся таинственные невидимые лучи урана и радия - это сначала было для ученых загадкой. А когда ее разгадали, то ученым пришлось убедиться, что неправильно прежде думали, будто атом самая простая частица всякого вещества.
На самом деле атом состоит из мельчайших частиц, их называют элементарными. Одни частицы образуют плотное ядро атома, другие постоянно движутся около ядра.
И оказалось, что атомы некоторых веществ нестойки: их ядра постепенно распадаются. А распадаясь, они выделяют тепло и те невидимые лучи, которые давали отпечаток на фотографической пластинке и обжигали кожу.
Вот эти вещества с нестойкими, постепенно распадающимися ядрами атомов и называют радиоактивными.
Их в природе немного. И постепенно становится меньше. Почему же их становится меньше? Да просто потому, что атомы радиоактивных веществ, распадаясь, превращаются в атомы других веществ, уже не радиоактивных. Радий, иногда уран, теряя радиоактивность, превращаются в самый обыкновенный свинец. Так что тот свинец, который мы теперь находим в руде, миллионы лет назад мог быть радием или ураном.
Приключения урана
Тихо жил уран почти полтораста лет с тех пор, как о нем впервые узнали. Добывали урана мало, потому что он почти никому не был нужен. Только и нашли ему дела, что красить стекло да фарфор. Если добавлять к стеклу, когда его варят, уран в разных соединениях, то можно получить желтое, зеленое, даже черное стекло. И фарфор разрисовывают красками, в которые входит уран.
Но вот Мария Кюри нашла в урановой руде новый металл - радий. Добыча урановой руды увеличилась: она понадобилась, чтобы извлекать из нее радий. А большую часть урана, оставшегося в руде, отправляли на свалку.
В 1939 году ученые сделали новые удивительные открытия. И тогда урановая руда стала драгоценной уже не из-за радия, а из-за самого урана.
Началась новая жизнь этого металла - такая важная для всего человечества, что сейчас даже вспомнить смешно, как еще недавно ураном пользовались только для окраски стекла и фарфора.
Человек покоряет атом
В 1939 году ученые дознались, что атомы урана могут распадаться не постепенно, тысячелетиями, а сразу, мгновенно. И при этом выделяется огромное количество тепла.
Такой одновременный распад множества атомов урана в природе не случается. Но ученые нашли способ по своей воле разрушать ядра урановых атомов. Они придумали устройство, которое работает, как пушка. Эта пушка стреляет в атом урана и взрывает его ядро. Она стреляет невидимым снарядом - частицей, которая называется "нейтрон". В ядре всякого атома есть нейтроны. Но если в атом урана попадет лишний нейтрон и проберется в его ядро, то атом взрывается.
Но это еще не главная хитрость. Нейтроны при взрыве ядра разлетаются и могут попасть в ядра соседних атомов. И тоже взорвать их.
Взрывы, как по цепочке, будут мгновенно передаваться от одного атома к другому, словно цепляться один за другой. Это явление так и назвали цепной реакцией.
А что же получится? Произойдет взрыв огромной силы: ведь распадется сразу колоссальное количество атомов. При этом выделится столько теплоты, что она может сжечь все живое на много километров вокруг, а воздушная волна от взрыва может разрушить целый город. Устройство, в котором мгновенно взрывается множество атомов урана, называется атомной бомбой.
Оно опасно еще и тем, что радиоактивные частицы, когда их много в воздухе, вредны для всего живого - для человека, животных и растений. А при взрыве атомной бомбы их разлетается очень много.
Неужели только и пользы от великого открытия ученых, сумевших расколоть атомы урана, что можно создавать невиданной силы бомбы? Тут ведь и слово "польза" совсем не подходит - это огромный вред для людей. Тепло, которое дает атомная бомба, может только сжигать, уничтожать и разрушать.
Но ведь можно приручить атомную энергию, научить ее не разрушать, а создавать, не вредить людям, а служить им. Каким образом? По-разному. Советские ученые стали работать над тем, чтобы добывать при распаде атомов умеренное тепло, годное для полезной работы, а не для уничтожения. И это им удалось. В 1954 году у нас была построена первая в мире атомная электростанция. Тепло, которое выделяют, расщепляясь, ядра тяжелых атомов, нагревает воду, превращает ее в пар. А пар приводит в движение турбины. Они вырабатывают электрический ток.
Так впервые не дрова, не уголь, не нефть, а металл стал служить топливом. И каким замечательным топливом! Для того чтобы большая атомная электростанция давала ток, ей нужно меньше одного килограмма урана на сутки работы. А угля или нефти понадобились бы десятки вагонов.
Это было только началом. Пять лет спустя в первое плавание по нашим северным морям отправился первый в мире атомный ледокол "Ленин". Для него тоже готовит пар урановое топливо. В одном грамме урана заключено энергии столько, сколько в двух тысячах литров бензина. Ледоколу не надо заходить в порт, чтобы запастись углем или нефтью, каждые несколько недель. Он может сразу взять на борт уранового топлива столько, что ему хватит на два-три года работы во льдах.
Еще мощнее два других советских атомных ледокола, построенные вслед за первым.
Где особенно нужно топливо, которое дает много энергии и занимает мало места? В космосе, конечно! Это значит, что уран - не только самое современное горючее нашего века. Это еще и горючее будущего. На урановом топливе могут работать космические ракеты.
Девяносто два?
Помнишь, я говорил, что человек мог делать все нужные ему вещи из девяноста двух элементов, которые есть в природе, но атомы, из которых состоят все элементы, человеку не были подвластны.
Теперь иначе. Радиоактивный металл уран открыл ученым дорогу к власти над атомом. И эта власть не только в том, что можно, расщепляя атомы урана, получать энергию. Власть больше! Человек теперь может создавать новые металлы - новые элементы, которых вовсе нет в природе или так мало, что их и обнаружить нельзя.
Уже не приходится тратить миллионы рублей и огромное количество материалов, чтобы добыть крупинки радия, нужного для лечения. Радий отлично заменяют новые, созданные человеком радиоактивные элементы.
Из всех созданных учеными новых элементов больше всего пользуются плутонием. Он образуется при расщеплении атомов урана и сам может служить атомным топливом. Это важно, потому что годного для получения атомной энергии урана в земле не так уж много.
Вот что я хотел тебе рассказать о металлах.
Сперва человек пользовался только металлами, которые находил в самородках, - золотом, медью.
Потом научился добывать металлы из руды.
Потом стал их соединять так, что хрупкие или мягкие металлы становились богатырями.
Затем, уже в наши дни, человек извлек великую мощь из самого сердца металла - из ядра его атома.
И может теперь, добравшись до атома урана, создавать новые металлы, каких нет в природе.