Вычисление числовых характеристик выборки




ТЕМА 2. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ РАСПРЕДЕЛЕНИЯ. НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ

Выборочное среднее. Выборочная дисперсия.

Выборочное среднее квадратическое отклонение

В теории вероятностей определили числовые характеристики для случайных величин, с помощью которых можно сравнивать однотипные случайные величины. Аналогично можно определить ряд числовых характеристик и для выборки. Поскольку эти характеристики вычисляются по статистическим данным (по данным, полученным в результате наблюдений), их называют статистическими характеристиками.

 

 

Пусть дано статистическое распределение выборки объема :

 

 

где - число вариантов.

 

Определение. Выборочным средним называется среднее арифметическое всех значений выборки:

.

Выборочное среднее можно записать и так: ,

где - частость.

В случае интервального статистического ряда в качестве берут середины интервалов, а - соответствующие им частоты.

Определение. Выборочной дисперсией называется среднее арифметическое квадратов отклонений значений выборки от выборочного среднего :

или .

 

Выборочное среднее квадратическое выборки определяется формулой:

.

Особенность состоит в том, что оно измеряется в тех же единицах, что и данные выборки.

Если объем выборки мал (), то пользуются исправленной выборочной дисперсией:

.

Величина называется исправленным средним квадратическим отклонением.

Выборочные начальные и центральные моменты.

Асимметрия. Эксцесс.

 

Приведем краткий обзор характеристик, которые наряду с уже рассмотренными применяются для анализа статистических рядов и являются аналогами соответствующих числовых характеристик случайной величины.

Среднее выборочное и выборочная дисперсия являются частным случаем более общего понятия – момента статистического ряда.

Определение. Начальным выборочным моментом порядка называется среднее арифметическое - х степеней всех значений выборки:

или .

Из определения следует, что начальный выборочный момент первого порядка: .

Определение. Центральным выборочным моментом порядка называется среднее арифметическое - хстепеней отклонений наблюдаемых значений выборки от выборочного среднего :

или .

Из определения следует, что центральный выборочный момент второго порядка:

.

Определение. Выборочным коэффициентом асимметрии называется число , определяемое формулой: .

Выборочный коэффициент асимметрии служит для характеристики асимметрии полигона вариационного ряда. Если полигон асимметричен, то одна из ветвей его, начиная с вершины, имеет более пологий «спуск», чем другая.

Если , то более пологий «спуск» полигона наблюдается слева; если - справа. В первом случае асимметрию называют левосторонней, а во втором - правосторонней.

 

Определение. Выборочным коэффициентом эксцесса или коэффициентом крутости называется число , определяемое формулой:

.

Выборочный коэффициент эксцесса служит для сравнения на «крутость» выборочного распределения с нормальным распределением.

Коэффициент эксцесса для случайной величины, распределенной по нормальному закону, равен нулю.

Поэтому за стандартное значение выборочного коэффициента эксцесса принимают .

Если , то полигон имеет более пологую вершину по сравнению с нормальной кривой; если , то полигон более крутой по сравнению с нормальной кривой.

Вычисление числовых характеристик выборки

Таблица 6

         
         
         
   

- середины интервалов; - частоты; - объем выборки;

с помощью суммы находим ;

с помощью суммы находим и ;

с помощью суммы находим ;

с помощью суммы находим .



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: