Строение металлов и сплавов.
Металловедением называется наука, изучающая строение и свойства металлов и сплавов в их взаимосвязи.
Эта наука не только объясняет внутреннее строение и свойства металлов и сплавов, но помогает предвидеть их, а также изменять их свойства.
Примерно две трети всех элементов являются металлами. Металлами называются химические элементы (простые вещества, состоящие из одинаковых атомов), характерными признаками которых являются непрозрачность, хорошая проводимость тепла и электрического тока, особый «металлический» блеск, ковкость. При нормальной, комнатной температуре все металлы (кроме ртути) являются твердыми веществами. В последнее время благодаря развитию химического производства наряду с металлами большое значение приобрели неметаллы.
Технически чистые металлы- это металлы, в состав которых, кроме химически чистого элемента, в небольших долях входят и другие элементы.
Сплавы- это сложные материалы, которые получают путем сплавления одного металла с другими металлами или неметаллами. В связи с тем, что сплавам можно придать самые разнообразные и более высокие механические, физические и технологические свойства, их применение, особенно в машиностроении, находит большее распространение, чем технически чистых металлов. Изготовляя сплавы с различным содержанием элементов, можно придать им разнообразные свойства, которые требуются для той или иной детали.
В твердом состоянии все металлы и сплавы имеют кристаллическое строение. Молекулы металлов (атомы, ионы) в пространстве располагаются в строго определенном порядке и между собой образуют кристаллическую решетку.
Образуется кристаллическая решетка посредством обработки металла, т.е. перехода его состояния из жидкого в твердое. Такой процесс носит название – кристаллизация.
Рис. 1. Кристаллические решетки в металлах могут быть разных типов.
Рис. 2. КРИСТАЛЛИЧЕСКИЕ МАТЕРИАЛЫобычно состоят из мелких зерен (слева). Поликристаллическая поверхность меди, рассматриваемая в поляризованном свете через оптический микроскоп, выглядит подобно лоскутному одеялу (справа).
Строение металлического слитка (на примере стального слитка)
Слитки металла можно различить три зоны с различной структурой. Кристаллизация жидкого металла начинается у поверхности более холодной формы и происходит в тонком сильно переохлажденном слое, примыкающем к поверхности. Вследствие большой скорости охлаждения произойдет образование на поверхности слитка очень узкой зоны 1 сравнительно мелких равноосных кристаллов.
Рис. 3. Схема строения стального слитка
За зоной 1 в глубь слитка расположена зона 2 удлиненных дендритных кристаллов (зона транскристаллизации). Рост этих кристалликов происходит в направлении противоположном отводу теплоты (то есть нормально к стенкам изложницы).
Рис. 4. Формы роста кристаллов: а — ступенчатая, б — ячеистая, в — дендритная форма роста кристаллов
В случае сильного перегрева металла, быстрого охлаждения, высокой температуры литья и спокойного заполнения формы зона удлиненных дендритных кристаллов может полностью заполнить весь объем слитка (транскристаллизация).
При низкой температуре литья, очень медленном охлаждении, например, крупных отливок создаются условия для возникновения зародышей в средней части слитка. Это приводит к образованию во внутренней части отливки структурной зоны 3, состоящей из равноосных различно ориентированных дендритных кристаллов, размеры которых зависят от степени перегрева жидкого металла, скорости охлаждения, наличия примесей и др.
Примеси, находящиеся в жидком металле, способствуют развитию зоны мелких равноосных кристаллов.
Зона столбчатых кристаллов обладает высокой плотностью, так как она имеет мало газовых пузырей и раковин. Однако в участках стыка столбчатых кристаллов, растущих от разных поверхностей, металл имеет пониженную прочность, и при последующей обработке давлением в этих участках могут возникнуть трещины. Кристаллизация, приводящая к стыку зон столбчатых кристаллов, носит название транскристаллизации.
Рис. 5. Общая схема областей и зон в затвердевающем слитке
Рис. 6. Фото дендритов в стальном слитке.
На практике для снятия наклепа металл нагревают до более высоких температур, чтобы ускорить процесс рекристаллизации. Эта операция называется рекристаллизационный отжиг. Он необходим при производстве заготовок (например, проволоки, ленты в металлургическом производстве) и деталей методами холодной пластической деформации. Так, после прокатки заготовки до определенного диаметра ее пластичность понижается настолько, что дальнейшая холодная обработка невозможна, потому что металл будет разрушаться. Для проведения дальнейшей прокатки и выполняется рекристаллизационный отжиг с целью восстановления исходной пластичности.
Рис. 7. восстановление нагартованного металла путем восстановительного отжига.