Резистивный каскад на биполярном транзисторе




Введение

 

Наиболее важное назначение электронных приборов - усиление электрических сигналов. Устройства, предназначенные для выполнения этой задачи, называются электронными усилителями.

Усилитель (рис. 1) - это электронное устройство, управляющее энергией, поступающей от источника питания к нагрузке. Причем мощность, требующаяся для управления, как правило, намного меньше мощности, отдаваемой в нагрузку, а формы входного (усиливаемого) и выходного (на нагрузке) сигналов совпадают.

 

 

 


5C9C6A1

Рис. 1. Схематичное представление работы усилителя

 

Усилительные устройства широко используются в автоматике и телемеханике, в следящих, управляющих и регулирующих системах, счетно-решающих и вычислительных машинах, контрольно-измерительных приборах, бытовой радиоаппаратуре и т.д.

Важнейшими техническими показателями являются: коэффициент усиления (по напряжению, току и мощности), входное и выходное сопротивления, выходная мощность, диапазон усиливаемых частот, частотные, фазовые и нелинейные искажения.

Большинство источников усиливаемого сигнала развивают очень низкое напряжение. Подавать его непосредственно на каскад усиления мощности не имеет смысла, т.к. при слабом управляющем напряжении невозможно получить сколько-нибудь значительные изменения выходного тока, а, следовательно, и выходной мощности. Поэтому в состав структурной схемы усилителя, кроме выходного каскада, отдающего требуемую мощность полезного сигнала в нагрузку, входят предварительные каскады усиления.

Эти каскады принято классифицировать по характеру сопротивления нагрузки в выходной цепи транзистора. Наибольшее применение получили резистивные усилительные каскады, сопротивлением нагрузки которых служит резистор.

В каскадах предварительного усиления на биполярных транзисторах чаще других используется схема с общим эмиттером (ОЭ), которая обладает высоким коэффициентом усиления по напряжению и мощности, сравнительно большим входным сопротивлением и допускает использование одного общего источника питания для цепей базы и коллектора.


Резистивный каскад на биполярном транзисторе

 

Простейшая схема резистивного усилительного каскада с общим эмиттером и питанием от одного источника показана на рис. 2. Входной сигнал поступает на базу и изменяет ее потенциал относительно заземленного эмиттера. Это приводит к изменению тока базы, а, следовательно, к изменению тока коллектора и напряжения на нагрузочном сопротивлении RK. Разделительный конденсатор Сp1 служит для предотвращения протекания постоянной составляющей тока базы через источник входного сигнала. С помощью конденсатора Сp2 на выход каскада подается переменная составляющая напряжения Uкэ изменяющаяся по закону входного сигнала, но значительно превышающая его по величине. Важную роль играет резистор RБ в цепи базы, обеспечивающий выбор исходной рабочей точки на характеристиках транзистора и определяющий режим работы каскада по постоянному току.

 

Рис. 2. Простейшая схема резистивного усилительного каскада с общим эмиттером

Для выяснения роли резистора RБ обратимся к рис. 3, иллюстрирующему процесс усиления сигнала схемой с общим эмиттером. В принципе процесс усиления можно отразить следующей взаимосвязью электрических величин.

 

Um ВХ I Б m IК m IК m RК (Um КЭ = EК - IК m RК) = U m ВЫХ

 

Действительно, рассматривая вначале рис. 3, а, а затем рис. 3, б, можно убедиться в том, что напряжение входного сигнала с амплитудой (Um ВХ=UБЭ m) синфазно изменяет величину тока базы. Эти изменения базового тока вызывают в коллекторной цепи пропорциональные изменения тока коллектора и напряжения на коллекторе, причем амплитуда коллекторного напряжения (с учетом масштаба по оси абсцисс) оказывается значительно больше амплитуды напряжения на базе. Следует обратить внимание на то, что напряжения сигнала на входе и на выходе каскада сдвинуты между собой по фазе на 180°, т. е. находятся в противофазе.

Это означает, что рассматриваемый каскад, не нарушая закон изменения сигнала (в нашем частном случае сигнал изменяется по синусоидальному закону), в то же время поворачивает его фазу на 180°.

 

Рис. 3. Графическое пояснение процесса усиления сигнала схемой с общим эмиттером

Для получения наименьших искажений усиливаемого сигнала рабочую точку (точку покоя) П следует располагать в середине отрезка АВ нагрузочной прямой, построенной в семействе выходных характеристик транзистора (режим усиления класса А). Из рис. 3, б видно, что положение рабочей точки П соответствует току смещения в цепи базы IБП. Для получения выбранного режима необходимо в усилителе обеспечить требуемую величину тока смещения в цепи базы. Для этого и служит резистор RБ в схеме рис. 2.

Схема, приведенная на рис. 2, получила название схемы с фиксированным базовым током. Смещение фиксированным током базы отличается минимальным числом деталей и малым потреблением тока от источника питания. Кроме того, сравнительно большое сопротивление резистора RБ (десятки кОм) практически не влияет на величину входного сопротивления каскада. Однако этот способ смещения пригоден лишь тогда, когда каскад работает при малых колебаниях температуры транзистора. Кроме того, большой разброс и нестабильность параметра β даже у однотипных транзисторов делают режим работы каскада весьма неустойчивым при смене транзистора, а также с течением времени.

Более эффективной является схема с фиксированным напряжением смещения на базе (рис. 4). В этой схеме резисторы R'Б и R"Б , подключенные параллельно источнику питания ЕК, составляют делитель напряжения.

При этом повышается стабильность режима работы схемы, так как изменения тока в цепях эмиттера и коллектора транзистора незначительно влияют на величину напряжения смещения.


Рис. 4. Схема резистивного каскада с фиксированным напряжением смещения

 

Сопротивление R"Б делителя включено параллельно входному сопротивлению транзистора. Кроме того, пренебрегая малым внутренним сопротивлением источника питания, можно считать, что R'Б и R"Б включены параллельно друг другу. Поэтому делитель, образованный резисторами R'Б и R"Б должен обладать достаточно большим сопротивлением (порядка нескольких кОм). В противном случае входное сопротивление каскада окажется недопустимо малым.

При построении схем транзисторных усилителей приходится принимать меры для стабилизации положения рабочей точки на характеристиках. Основной дестабилизирующий фактор, нарушающий устойчивую работу транзисторной схемы, - влияние температуры. Существуют различные способы термостабилизации режима работы транзисторных каскадов.

Наибольшее распространение получила схема термостабилизации режима, приведенная на рис. 5. В этой схеме навстречу фиксированному прямому напряжению смещения, снимаемому с резистора R"Б, включено напряжение, возникающее на резисторе RЭ при прохождении через него тока эмиттера. Пусть по какой-либо причине, например при увеличении температуры, постоянная составляющая коллекторного тока возрастает. Так как IЭ =IК+IБ, то увеличение тока IК приведет к увеличению тока эмиттера IЭ и падению напряжения на резисторе RЭ. В результате напряжение между эмиттером и базой UБЭ уменьшится, что приведет к уменьшению тока базы IБ, а следовательно, и тока IК.

Наоборот, если по какой либо причине коллекторный ток уменьшится, то уменьшится и напряжение на резисторе RЭ, а прямое напряжение UБЭ возрастет. При этом увеличится ток базы и ток коллектора.

 

Рис. 5. Схема резистивного каскада с фиксированным напряжением смещения

 

В большинстве случаев резистор RЭ шунтируется конденсатором CЭ достаточно большой емкости (порядка десятков микрофарад). Это делается для отвода переменной составляющей тока эмиттера от резистора RЭ.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-08-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: