Выбор типа передачи и вида зацепления




Библиографический поиск

 

Библиографический поиск проведен по теме: ''Зубчатые передачи, использованные в оптических приборах '' за период с 1956 по 1995 год по учебным пособиям и справочной литературе.

В результате проведенного поиска найдено девять источников, информация о которых представлена ниже.

Характерной особенностью оптических приборов является органичность сочетания и взаимодействия в них оптических и механических систем. Последние подразделяются на два основных вида: несущие и подвижные системы.

Несущие системы представляют собой комплексы неподвижных элементов (оснований, кронштейнов, плат, стоек и пр.) и предназначаются для базирования и внутреннего взаимного ориентирования оптических и других схемных элементов прибора. Они представляют собой общую компоновку конструкции, ее жесткость, технологичность сборки, надежность. Характерной особенностью является широкое применение в них регулировочно-юстировочных устройств, обусловленное высокими требованиями к точности оптических приборов, а также сравнительно низкий уровень унификации конструктивных решений.

Подвижные системы осуществляют механическое перемещение оптических систем и их элементов, обусловленное их функциональным назначением; образуют измерительные цепи приборов; являются основой устройств управления различными видами позиционирования, широко применяемого в оптических приборах; выполняют разнообразные простейшие транспортирующие функции. Подвижные системы представляют конструктивную реализацию кинематических цепей, поэтому проектирование их базируется на выборе типов исходных механизмов и на определении их параметров. Ведущую роль в данных механизмах играют малогабаритные редукторы.

Функциональное назначение механизмов в оптических приборах. В оптических приборах в основном встречаются три вида задач, решаемых с помощью механизмов: 1) позиционирования исполнительного элемента механизма в заданное положение; 2) передача измерительного сигнала от чувствительного элемента измерительной цепи на регистрирующее устройство; 3) осуществление процесса движения с целью перемещения некоторого рабочего элемента (кино- или магнитной ленты и т.п.).

Совокупность оптических деталей, установленных в положение, заданном расчетом и конструкцией, составляет оптическую систему прибора.

Оптические детали разделяются на следующие виды: линзы, зеркала, призмы и клинья, дифракционные решетки, сетки, экраны, светофильтры, защитные стекла, поляризационные призмы, поляфильтры, компенсаторы, световоды.

В качестве узлов рассматриваются части, состоящие из деталей, соединяемых склеиванием или устанавливаемых на оптическом контакте, а также объективы, окуляры, сложные призмы и типовые призменные системы. Эти детали и узлы являются основными элементами оптических приборов.

Однако, помимо перечисленных узлов, важную роль в оптических приборах играют зубчатые, червячные и ременные передачи.

Примеры зубчатых и других передач представлены в следующих устройствах, приведенных ниже, а также их назначение, основные требования и краткое описание работы.

Механизмы служат для осуществления заданного вида и закона механического движения. По условиям применения в подвижных системах оптических приборах (ПСОП) механизмы подразделяются на силовые, выполняющие простые транспортирующие функции; ходовые (применяются в основном при автоматизированном управлении движением) и точные механизмы. К первым предъявляются требования легкости и плавности хода, ко вторым- требование малости потерь на трение, к третьим- обеспечение заданной точности функционирования. Основные характеристики механизмов- структура и свойства. Структура сложного механизма, применяемого в оптических приборах, определяется числом и типами элементарных механизмов, составляющих его кинематическую цепь. /6, 7/

Классификиция узлов ОП, использующих зубчатые передачи представлено в следующей схеме:

Механическиеузлы ОП

           
     
 

 


 

системы визированияузлы перемещенияюстировочные уст-ва

червячная червячная зубчато-реечная

цилиндрическая винтовая червячная

винтовая

Примеры узлов, содержащих зубчатые передачи в ОП, представлено на следующих рисунках:

 

1-оптическая труба; 2-червячное колесо;

Рисунок 1-Угломерное червячное устройство.


Применяется для измерения углового перемещения оптической зрительной трубы 1, соединенной с червячным колесом 2, имеет вход на колесе и выход на отсчетном устройстве, соединенным с червяком. /6/

 

z1,z2,...z10-цилиндрические зубчатые колеса;

Рисунок 2-Визирная головка с дистанционным приводом.

 

Указанное устройство используется для дистанционного наведения визира. Устройство состоит из головной призмы и системы следящего электропривода. Исполнительным элементом является управляемый электродвигатель; обратная связь осуществляется с помощью двух вращающихся трансформаторов (ВТ)- грубого и точного отсчета. Наличие двух элементов обратной связи объясняется их невысокой точностью по сравнению с необходимой точностью визирования. Редуктор механизма состоит из цилиндрических прямозубых зубчатых колес (zn). Для выборки мертвого хода в цепи призма-ВТ точного отсчета применены разрезные зубчатые колеса z2 и z4.

В качестве датчиков обратной связи можно применять потенциометры, сельсины и другие элементы, обеспечивающие необходимую точность. /7/

Фокусировочные механизмы.

Фокусировочные механизмы предназначены для получения резкого изображения объекта в микроскопах и контрольно-юстировочных устройствах. В настоящее время в микроскопостроении известно большое число различных схем и конструкций фокусировочных механизмов. Обычно, они состоят из раздельно функционирующих механизмов для грубого и тонкого перемещения. В качестве механизма грубого и тонкого перемещения чаще всего используют зубчато-реечную передачу, состоящую из косозубой шестерни и рейки. Применение такой передачи обусловлено необходимостью получить плавное перемещение ведомого элемента механизма. Плавность движения ведомых элементов фокусировочных механизмов- основное требование, которое предъявляется к этим механизмам. Пример фокусировочного механизма представлен на рисунке 3.

 

1-винт; 2-клин; 3-ролик; 4-каретка; 5-пружина;

Рисунок 3-Фокусировочный механизм.

В данном механизме, вращение винта 1 вызывает поступательное перемещение клина 2 вдоль оси винта. Перемещение клина вызывает перемещение каретки 4. Контакт каретки 4 с клином 2 осуществляется силовым замыканием с помощью пружины 5. Для уменьшения трения и увеличения плавности движения каретки 4 контакт ее с клином осуществляется через ролик 3. /6/

 

1-оправа; 2-качающаяся оправа; 3-основание; 4-червяк; 5-шпонка; 6-втулка;

Рисунок 4- Механизм вертикального наведения.

 

Механизм вертикального наведения визира состоит из оправы 1, установленной на юстировочных винтах в качающейся оправе 2. Оправа 2 вращается в шарикоподшипниках, закрепленных в кронштейнах на основании 3. Для исключения отклонения плоскости движения визирного луча от вертикальной плоскости призмы должна быть параллельна опорной плоскости основания. Качение призмы производится системой шток-рейка-зубчатый венец, причем в качестве рейки используется червяк. Червяк 4имеет лыску и фиксируется от поворота шпонкой 5, закрепленной во втулке 6,которая может поворачиваться, благодаря чему достигается установка визирного луча без осевого смещения червяка. /7/

Вследствие проведенного библиографического поиска можно сделать вывод, что в оптических приборах наиболее широкое применение нашли червячные и винтовые зубчатые передачи.

Выбор типа передачи и вида зацепления

 

Конические зубчатые передачи: конические зубчатые колёса применяют, когда необходимо получить передачу вращения между валами, оси которых пересекаются под углом. Наиболее часто применяют передачи с межосевым углом равным 90о. Конические колёса выполняют с прямым, косым и криволинейным (дуговым) направлением зубьев. В приборостроении преимущественно применяют конические колёса с прямыми зубьями.

Червячная передача. Показанная на (рис. 1, а)передача состоит из червяка 1, представляющего собой винт с трапецеидальным или близким к нему профилем витка, и червячного колеса 2. Передача вращения осуществляется между вилами, оси которых перекрещиваются. Во многих механизмах приборов такое расположение валов (рис. 1, б) оказывается наиболее оптимальным. Посредством червячной передачи можно осуществить большие передаточные отношения — до 300 и более; однако наиболее часто I =; 7... 100. Передачи характеризуются плавностью и бесшумностью работы. Обычно червячные передачи используют в качестве редукторов, т. е. когда движение передается от червяка к колесу. Наряду с этим в приборостроении применяют червячные передачи в качестве мультипликаторов, когда движение передается от червячного колеса к червяку (регуляторы скорости и др.). Существенным преимуществом червячных передач является возможность исключения обратной передачи вращения, т. е. от колеса к червяку. К недостаткам червячных передач относятся низкий к. п. д. из-за больших потерь на трение в зацеплении витков червяка с зубьями червячного колеса и необходимость по этой же причине выполнять червячные колеса или их зубчатые венцы из дорогих антифрикционных материалов.

 

       
   
 

Рис.1

 

Также есть винтовые передачи, они служат для преобразования вращательного движения в поступательное. Основными деталями винтовой передачи являются винт в виде цилиндра с наружной резьбой и гайка в виде кольца с внутренней резьбой. Винтовые передачи разделяют на силовые и кинематические (отсчетные). Силовые передачи работают при значительных нагрузках и должны иметь высокий к. п. д. и достаточную прочность. Кинематические винтовые передачи должны обеспечивать точность перемещения деталей и узлов приборов.

Также существуют и другие виды передач.

Наиболее распространённым среди видов передач является эвольвентное зацепление, предложенное ещё Эйлером. Благодаря своей технологичности и эксплуатационным качествам.

Эвольвентное зацепление. Наиболее распространенным профилем зубьев колес, отвечающим требованиям основной теоремы зацепления, является эвольвента окружности. Эвольвентой называется кривая, представляющая собой траекторию движения любой точки прямой, перекатывающейся без скольжения по окружности 2(рис. 2, а). Прямая 1 называется производящей прямой, а окружность 2— эволютой или (применительно к зубчатому колесу) основной окружностью.

 

Рис.2

 

При равномерном вращении колёс точки контакта, перемещаясь с одной и той же скоростью по линии зацепления, будут перемещаться не равномерно по профилю, т. е. два сопряжённых профиля перекатываются друг по другу со скольжением.

Зацепление Новикова применяется для передачи больших крутящих моментов.

Циклоидальные (часовые) зубчатые передачи. Профиль зуба колеса в циклоидальном зацеплении сложный. Он состоит из двух кривых, представляющих собой траектории движения точек двух производящих окружностей 2 и 3 (рис. 3 а) одна (2) их которых катится снаружи, а другая (3) – внутри основной окружности 1.

 

Рис. 3

При качении производящей окружности 2 образуется эпициклоидальный профиль 3 - гипоциклоидальный профиль М0Мг ножки зуба колеса. При r = r1|2 профиль ножки - гипоциклоиды – становится радиально направленной прямой (рис. 3 б). В циклоидальной зубчатой передачи основные (они же начальные) окружности (рис. 3 в) соприкасаются в полюсе Р. Одна и та же производящая окружность 3 служит для образования ножки зуба колеса при качении её внутри основной окружности 1 и эпициклоидальной головки зуба шестерни (триба) при её качении снаружи основной окружности 2. Аналогично, производящая окружность 4 при качении внутри основной окружности 2 образует ножку зуба шестерни, а при качении снаружи основной окружности 1 – эпициклоидальный профиль головки зуба. По дугам N1P и PN2 производящих окружностей перемещается точка контакта профиля зубьев колёс при работе передачи. Из рассмотренного вытекает, что каждому колесу должен соответствовать вполне определённый триб, поскольку головка зуба колеса образовывается производящей окружностью, служащей одновременно для получения ножки зуба триба. И, наоборот, каждому трибу соответствует вполне определённое колесо.

Основным достоинством циклоидальных передач является возможность изготовления трибов с малым числом зубьев (5…6), что позволяет значительно сокращать их габариты. Это послужило поводом к замене эпициклоидального зацепления профиля головок зубьев другой окружности. В отличие от циклоидального, зацепление таких профилей зубьев называется часовым. Соответствующим выбором радиуса ρ1 заменяющей окружности (рис 4) и её положения относительно центра колеса, определяемого радиусом r1, можно улучшить работу зубчатой передачи в реальных условиях, в частности приблизить начало зацепления к линии центров. Это обеспечивает значительное сокращение сил сопротивления вращению колёс в передаче. При замене дуг эпициклоид головок зубьев дугами окружностей значительно упрощается изготовление дисковых фрез для нарезания колёс и трибов, а также и червячных фрез.

 

Рис. 4

 

Разновидностью циклоидального является цевочное зацепление. Оно, по существу, мало отличается от часового. Основное отличие состоит лишь в том, что у зубьев шестерни (триба) отброшен прямолинейный участок ножки зуба и оставлен лишь дуговой профиль головки зуба, доведённый до цилиндра, оформленного конструктивно в виде так называемой цевки. Поэтому цевочное зацепление целесообразно назвать цевочным часовым зацеплением.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-08-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: