Классификация конденсаторов




Мкость

Основной характеристикой конденсатора является его электрическая ёмкость (точнее номинальная ёмкость), которая определяет накопленный заряд. Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы с ёмкостью до десятков фарад.

Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга, в системе СИ выражается формулой:

 

[1Ф=1Кл/1В], ,

 

где εr – относительная диэлектрическая проницаемость диэлектрика, разделяющего пластины конденсатора; ε0 – электрическая постоянная; S – площадь одной пластины, м2; d – расстояние между пластинами, м.

По типу диэлектрика конденсаторы делятся на бумажные, слюдяные, керамические и др.

Классификация конденсаторов

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

По виду диэлектрика различают:

· Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).

· Конденсаторы с газообразным диэлектриком.

· Конденсаторы с жидким диэлектриком.

· Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.

· Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.

· Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью! В качестве диэлектрика используется оксидный слой на металле, являющийся анодом. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах) или слой полупроводника (в оксидно-полупроводниковых), нанесенный непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги.

Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

· Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).

· Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды) и температурой (термо­конденсаторы). Применяются, например, в радиоприемниках для перестройки частоты резонансного контура.

· Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространенные низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляюшие, дозиметрические, пусковые и другие конденсаторы.

Номинальное напряжение

Другой не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.

Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается.

 

Обозначение конденсаторов на схемах

 

 

Для получения больших ёмкостей конденсаторы соединяют параллельно. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею. Параллельное соединение:

Рис.1.

 

Таким образом, общая или эквивалентная емкость при параллельном соединении конденсаторов равна сумме емкостей отдельных конденсаторов:

 

.

 

Из этой формулы следует, что при параллельном соединении одинаковых конденсаторов емкостью С общая емкость

 

.

 

Последовательное соединение:

Рис.2.

 

Найдем общую емкость. Так как ,

 

где ; ; ; , то .

 

Сократив на Q получим

.

 

При последовательном соединении n одинаковых конденсаторов емкостью C каждый общая емкость

.

 

При зарядке конденсатора от источника питания энергия этого источника преобразуется в энергию электрического поля конденсаторов:

 

,

 

или с учетом того, что ,

.

 

Дайте ответы на вопросы:

1. Дайте определение конденсатора.

2. Основная характеристика конденсаторов.

3. Единица измерения емкости.

4. Приведите условное обозначение конденсатора.

 

 

Литература:

Основные источники:

1. Синдеев Ю. Г. Электротехника с основами электроники: учеб. пособие для проф. училищ, лицеев и колледжей / Ю. Г. Синдеев. - Изд. 12-е, доп. и перераб.; Гриф МО. - Ростов н/Д: Феникс, 2010. - 407 с.

2. Электротехника и электроника: учебник для студентов общеобразовательных учреждений среднего профессионального образования. М.В. Немцов, М.Л. Немцова. Издательство: - Академия, 2013

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-12-05 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: