Понятие электрического тока. Условия, необходимые для появления и существования тока. Сила и плотность тока. Единицы измерения.
Электрическим током называется любое упорядоченное (направленное) движение электрических зарядов. В проводнике под действием приложенного электрического поля ^свободные электрические заряды перемещаются: положительные — по полю, отрицательные — против поля (рис. 148, а), т.е. в проводнике возникает электрический ток, называемый током проводимости. Для возникновения и существования электрического тока необходимо, с одной стороны, наличие свободных носителей тока — заряженных частиц способных перемещаться упорядоченно, а с другой наличие электрического поля, энергия которого, каким-то образом восполняясь, расходовалась бы на их упорядоченное движение. За направление тока условно принимают направление движения положительных зарядов. Количественной мерой электрического тока служит сила тока I — скалярная физическая величина, определяемая электрическим зарядом, проходящим через поперечное сечение проводника в единицу времени:I=dQ/dt; Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Для постоянного тока I=Q/t; где Q — электрический заряд, проходящий за время t через поперечное сечение проводника. Единица силы тока — ампер (А). Физическая величина, определяемая силой тока, проходящего через единицу площади поперечного сечения проводника, перпендикулярного направлению тока, называется плотностью тока: j=dI/dS(перпендикуляр). Плотность тока — вектор; направление вектора j совпадает с направлением упорядоченного движения положительных зарядов: j = ne(v).(96.1)Единица плотности токи ампер на метр в квадрате (А/м2).
|
Закон Ома для однородного участка цепи (интегральный закон Ома). Сопротивление, удельное сопротивление. Зависимость сопротивления от температуры. Соединение проводников.
Сила тока I, текущего по однородному металлическому проводнику (т.е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника I=U/R(98.1) где R — электрическое сопротивление проводника. Уравнение (98.1) выражает закон Ома для участка цепи (не содержащего источника тока): сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника. Формула (98.1) позволяет установить единицу сопротивления ом (Ом): 1 Ом — сопротивление такого проводника, в котором при напряжении 1 В течет постоянный ток 1 А. Сопротивление проводников зависит от его размеров и формы, а также от материала, из которого проводник изготовлен. Для однородного линейного проводника сопротивление R прямо пропорционально его длине I и обратно пропорционально площади его поперечного сечения S: R=ро*l/S; где ро- коэффициент пропорциональности, характеризующий материал проводника и называемый удельным электрическим сопротивлением.Единица удельного электрического сопротивления ом-метр (Ом • м). Температурная зависимость сопротивления может быть представлена в виде R = aR0T,(98.6)где Г— термодинамическая температура. Зависимость сопротивления от температуры (98.6) представлена на рис. 149 (кривая 1). При низких температурах наблюдается отступление от этой зависимости.
|
Закон Ома в дифференциальной форме.
Так как в изотропном проводнике носители тока в каждой точке движутся в направлении вектора Е, то направления j и Е совпадают. Поэтому формулу (98.4) можно записать в виде _j = гамма*_E.(98.5) Выражение (98.5) закон Ома в дифференциальной форме, связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке. Это соотношение справедливо и для переменных полей.
Сторонние силы. Электродвижущая сила (ЭДС), разность потенциалов и напряжение на участке цепи (определения, формулы).
Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называются сторонними. Сторонняя сила действующая на заряд Q{), может быть выражена как _Fст=_Ест*Q0. Сторонние силы совершают работу по перемещению электрических зарядов. Физическая величина, определяемая работой, совершаемой сторонними силами при перемещении единичного положительного заряда, называется электродвижущей силой (ЭДС), действующей в цепи: ЭДС=А/Q0;(97.1). Эта работа производится за счет энергии, затрачиваемой в источнике тока, поэтому величину ЭДС можно также называть электродвижущей силой источника тока, включенного в цепь. ЭДС, как и потенциал, выражается в вольтах. Напряжением U на участке 1 — 2 называется физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторонних сил при перемещении единичного положительного заряда на данном участке цепи. Таким образом, согласно (97.4),U12=ФИ1-ФИ2+ЭДС12; Понятие напряжения является обобщением понятия разности потенциалов: напряжение на концах участка цепи равно разности потенциалов в том случае, если на этом участке не действует ЭДС, т.е. сторонние силы отсутствуют.
|
Закон Ома для участка цепи с гальваническим элементом. Замкнутая электрическая цепь с источником тока. Закон Ома для замкнутой цепи. Соединение источников тока.
Мы рассматривали закон Ома для однородного участка цепи, т. е. такого, в котором не действует ЭДС (не действуют сторонние силы). Теперь рассмотрим неоднородный участок цепи, где действующую ЭДС на участке 1 — 2 обозначим через а приложенную на концах участка разность потенциалов — через фи1-фи2. Если на данном участке цепи источник тока отсутствует (I = 0), приходим к закону Ома для однородного участка цепи (98.1): I=U/R,[при отсутствии сторонних сил напряжение на концах участка равно разности потенциалов]. Если же электрическая цепь замкнута, то выбранные точки 1 и 2 совпадают,фи1 = фи22, тогда закон Ома для замкнутой цепи: I=ЭДС/R;где ЭДС, действующая в цепи; R — суммарное сопротивление всей цепи. В общем случае R= r + R, (г— внутреннее сопротивление источника тока, R сопротивление внешней цепи). Поэтому закон Ома для замкнутой цени будет иметь вид I=ЭДС/R+r. Если цепь разомкнута и, следовательно, в ней ток отсутствует (I = 0), то из закона Ома получим, что ЭДС=фи1-фи2, г.е. ЭДС, действующая в разомкнутой цепи, равна разности потенциалов на ее концах. Следовательно, для того чтобы найти ЭДС источника тока, надо измерить разность потенциалов на его клеммах при разомкнутой цепи.