Гормоны задней доли гипофиза 7 глава




Коль скоро мы заговорили о пигментации, то можно упомянуть еще один маленький железистый орган, окруженный некой завесой таинственности. Это конусовидное красновато-серое образование прикрепленное, как и гипофиз, с помощью ножки к основанию головного мозга. Поскольку своей формой эта железа напоминает сосновую шишку, то ее назвали шишковидной железой (в русской литературе эта железа чаще называется эпифизом). Она меньше, чем гипофиз, и находится на противоположной от него части мозга, которая, направляясь вниз, переходит в спинной мозг. Гипофиз находится на передней поверхности этого расширения мозга, а шишковидная железа - на задней.

Славные времена настали для шишковидной железы в XVII веке, когда влиятельный французский математик и философ Репе Декарт, находясь под впечатлением того, что шишковидная железа обнаружена только у человека и не найдена ни у одного животного, утверждал, что шишковидная железа есть вместилище человеческой души. Это утверждение не надолго пережило своего создателя, поскольку вскоре было выявлено, что эпифиз присутствует у всех позвоночных, а у некоторых видов он даже более выражен, чем у человека.

Еще более волнующим для зоологов оказался тот факт, что шишковидная железа не всегда была так глубоко спрятана в глубинах черепа, как это наблюдается сейчас у человека и большинства современных позвоночных. Были времена, когда она располагалась на ножке и достигала макушки, выглядывая на поверхность и выполняя функцию третьего глаза, ни больше ни меньше. Одна примитивная рептилия до сих пор живет на островах близ Повой Зеландии с «шишковидным глазом», который почти полноценно функционирует. Некоторые ученые даже высказывают предположение о том, что, располагаясь на своде, снаружи черепа, шишковидный глаз подвергался непосредственному воздействию солнца и служил термостатом, регулирующим температуру тела. Возможно, это было первым шагом к теплокровности млекопитающих.

Но обратимся к человеку. Какова у него функция шишковидной железы? Это образование действительно похоже на железу, и предполагалось, что из пеги удастся выделить гормон, который конечно же назвали бы шишковидным. Однако самые тщательные усилия не дали никаких результатов, породив лишь сомнения. Возможно, эпифиз - это действительно просто рудиментарный третий глаз, который остановился в своем развитии, как червеобразны» отросток, и не выполняет никакой функции? Появилась даже тенденция не называть эпифиз железой, а присвоить ему наименование «шишковидного тела». Ученые, открывшие МСГ, окрыленные своим успехом, решили в конце 50-х годов снова заняться эпифизом. Они переработали добытые на бой не эпифизы 200 000 быков и, наконец, получили крошечное количество вещества, которое вызывало депигментацию кожи у головастиков. Вещество оказалось гормоном, эпифиз был снова торжественно поименован железой, а гормон назвали мелатонином. Темпе менее, этот гормон, как выяснилось, не оказывает ни малейшего действия на меланоциты человека.

Глава 5

ПОЛОВЫЕ ЖЕЛЕЗЫИ РОСТ

ГОРМОНЫРАСТЕНИЙ

 

Гормоны, которые мы до сих пор обсуждали (за исключением желудочно-кишечных), призваны обеспечивать стабильность условий, в которых функционирует организм, или, по меньшей мере, допускать их изменения в очень узких границах. Инсулин, глюкагон, адреналин и глюкокортикоиды, соединяя свои усилия, поддерживают уровень концентрации глюкозы крови в таких пределах, чтобы эта концентрация наилучшим образом соответствовала текущим потребностям организма. Паратиреоидный гормон, кальцитонин и витамин D делают то же самое с содержанием в крови ионов кальция. Минералокортикоиды поддерживают стабильное содержание в крови нескольких неорганических ионов. Тиреоидный гормон поддерживает на стабильном уровне интенсивность и скорость обмена веществ. Вазопрессин делает то же самое с содержанием в организме воды.

Но, при всей необходимости поддержания такого постоянства, организм отнюдь не является равновесной системой, которая в своем существовании лишь то и дело отклоняется от некоторого среднего положения, оставаясь все время одинаковой.

В нашей жизни существует довольно длительный период, когда мы существуем в явно неравновесных условиях. Процессы жизнедеятельности в этот период не являются цикличными, нет, они носят прогрессивный характер, перемещаясь не туда-сюда, а вперед и выше.

Короче, ребенок должен расти и развиваться. В действительности за этой простой фразой кроется неимоверная сложность.

Рост единственной клетки - биохимически достаточно сложный - в физическом аспекте представляется весьма простым. Клетка поглощает питательные вещества, все больше и больше их превращается в компоненты клетки, ее объем увеличивается, и одновременно увеличивается площадь ее мембраны. Со временем увеличение объема настолько опережает рост мембраны, что клетке начинает не хватать кислорода, который поступает в нее путем простой диффузии, и эта нехватка запускает процесс клеточного деления.

В многоклеточных организмах к этим процессам добавляется еще одно измерение. Отдельные клетки организма тоже растут и делятся, но теперь этот процесс должен быть координированным и хорошо согласованным. Организм не может позволить одной группе клеток расти и развиваться за счет другой группы, столь же необходимой для отправления функций целостного организма. Рост всех групп должен быть четко сбалансированным, что бы каждая группа клеток могла эффективно выполнять свою функцию, не испытывая «притеснений» со стороны других групп.

Например, в человеческом организме некоторые клетки, такие, как нервные, вообще не размножаются после рождения. Клетки некоторых органов и тканей начинают размножаться в ответ к какие-то экстраординарные стимулы. Например,

костные клетки начинают интенсивно размножаться для замещения утраченной костной ткани после перелома, а клетки печени размножаются, чтобы заместить ткань, удаленную хирургом во время операции. (Такие процессы называются регенерацией.) Есть в организме и такие клетки, которые растут и размножаются в течение всей жизни человека. Лучшим примером таких клеток служат клетки кожи, которые растут всю жизнь для образования мертвого, но надежного защитного слоя - эпидермиса. Такова судьба клеток кожи - вечно отшелушиваться и вечно возрождаться.

Процесс координированного роста требует топкой подгонки и регуляции работы биохимических механизмов индивидуальных клеток и тканей. Свидетельством сложности такой регуляции является тот факт, что биохимикам до сих пор не известны детали инициации роста и контроля его процессов. Если этот критерий сложности кажется вам слишком субъективным, то я могу сказать, что о сложности системы говорит тот факт, что зачастую некоторые наборы клеток (ткани) выходят из повиновения управляющих центров и начинают бесконтрольно и неограниченно размножаться.

Неконтролируемый рост не обязательно бывает быстрым и страшным, пет, его опасность заключается именно в его бесконтрольности. Беда в том, что отказывает механизм, способный остановить рост и размножение клеток в нужный момент. Клетки в таких случаях начинают делиться до бесконечности, отягощая организм своим весом, сдавливая нормальные ткани, постепенно выводя их из строя и лишая возможности нормально работать. Массы неконтролируемых клеток достигают таких размеров, что им перестает хватать кислорода, и они начинают разрушаться, отравляя организм. Одичавшие клетки иногда отрываются от общей массы, прорываются в кровеносное русло, переносятся в другие участки организма и, начиная расти там, продолжают свою анархическую деятельность.

Любой ненормальный рост такого рода, в каком бы участке организма он ни происходил, называется опухолевым ростом, то есть ростом, приводящим к образованию опухоли. В некоторых случаях такой рост бывает все же ограниченным. Возникают папилломы или бородавки, которые причиняют некоторые неудобства и косметические дефекты, но не представляют реальной опасности для жизни. Такие опухоли называют доброкачественными. Если же аномальный рост не ограничен ничем и когда растущие клетки прорастают в соседние ткани и распространяются по организму, то такие опухоли называют злокачественными. Галей, врач времен Римской империи, описал опухоль молочной железы, которая, прорастая в вены, становилась похожей на краба, распространяя свои щупальца в разные стороны от центрального очага. С тех пор злокачественные опухоли начали называть раком.

В наше время рак получил большее распространение, чем когда-либо прежде, по трем причинам. Во-первых, улучшились методы диагностики, и, когда человек умирает от рака, мы знаем это, а не приписываем смерти иную причину. Во-вторых, на протяжении XX столетия резко уменьшилась встречаемость других заболеваний, особенно инфекционных. Те люди, которые в прежние времена умирали бы от дифтерии, тифа или холеры, живут достаточно долго, чтобы стать жертвами рака. В-третьих, наша передовая технология ударила нас, как неумело брошенный бумеранг, так как мы отравили окружающую среду, которая и привела к увеличению заболеваемости раком. Среди вредных факторов можно отметить рентгеновское и радиоактивное излучение, загрязнение атмосферы синтетическими химическими веществами, выхлопными газами автомобилей, промышленными дымами. Пагубную роль играет и повсеместное распространение курения табака.

Вернемся, однако, к нормальному росту.

Учитывая тот факт, что гормоны столь тонко регулируют химические процессы в организме, было бы странно предполагать, что они не участвуют в контроле такого важного процесса, как рост. Есть еще один аспект универсальной природы роста, который говорит о важной роли гормональной регуляции. В процессах роста гормоны играют важную роль даже в царстве растений.

На рост растений природа накладывает гораздо меньшие ограничения, чем на рост животных. У животных ограниченное количество конечностей, они имеют определенную форму и растут только в определенных местах, имея при этом заданные размеры. Напротив, ветви дерева отрастают в относительно неограниченном количестве, их форма и размеры не фиксированы с такой строгостью, как в животном царстве. Но, тем не менее, копт-роль роста необходим и у растений.

Вещества, способные ускорять рост растений, присутствуя в растворах в очень небольших количествах, были впервые выделены в чистом виде в 1935 году. Эти вещества были названы ауксинами («увеличение», греч.). Самым известным и хорошо изученным ауксином является соединение, называемое индолил-3-уксусная кислота (ИУК). Этот гормон является модифицированной аминокислотой. В данном случае модифицированной аминокислотой из которой растение синтезирует (ИУК) является триптофан.

 

Ауксины образуются в кончиках побегов растений и продвигаются вниз, к основному стволу, и стимулируют не размножение клеток, а их удлинение. Многие движения растений управляются ауксинами. Например, большие количества ауксинов накапливаются в той части ствола растения, которое удалено от солнца. Эта часть растет быстрее, ее клетки удлиняются, и растение изгибается в сторону солнца. Подобным же образом ауксины скапливаются в нижней части лежащего горизонтально стебля, который вследствие этого начинает загибаться кончиком вверх.

Гормоны растений, как и гормоны вообще, могут приводить к заболеваниям, если имеются в избытке. Один из самых мощных ауксинов был открыт именно при исследовании болезней растений Японские крестьяне, выращивая рис, заметили, что иногда растение дает странные побеги, которые вырастают очень высокими, а потом начинают чахнуть и слабеть. Японцы назвали такие побеги «баканеэ», глупыми саженцами. В 1926году - японские фитопатологи установили, что эти побеги поражаются определенным видом грибка. В 1938 году уэтого грибка был выделен фактор роста, который и заставлял глупые побеги вырастать до немыслимой высоты. Этот гриб оказался принадлежащим к роду Gibberella, поэтому новое стимулирующее рост вещество было названо гиббереллином.

Структура гиббереллинов (поскольку существует несколько схожих разновидностей) была установлена только в 1956 году и оказалась весьма сложной. Молекулы этих соединений состоят из пяти колец атомов. Гиббереллины были выделены и из других растений, например из бобовых, что говорит о том, что их можно рассматривать как нормальные ауксины. Гиббереллины, как, впрочем, и ауксины вообще, можно использовать для ускорения прорастания, цветения и плодоношения. Короче говоря, с помощью ауксинов можно заставить растение бежать по жизни бегом, разумеется к нашей выгоде.

Ауксиноподобные соединения могут, конечно, загнать растение до смерти, опять-таки к нашей выгоде. Есть синтетическое вещество, которое называется 2,4-дихлорфеноксиуксусной кислотой, сокращенно 2,4-D, обладающее ауксиноподобными свойствами. Если опрыскать растение этим соединением, то оно начинает так интенсивно расти, что не выдерживает такого темпа и погибает. Можно считать это состояние индуцированным раком растения. Растения с широкими листьями поглощают гербицид в больших количествах, чем растения с узкими листьями. В результате первые погибают, а последние продолжают нормально расти. Человеку чаще надо культивировать растения с узкими листьями - травы и злаки, в то время как сорняки, забирающие у культурных растений свет, воду и питательные вещества, почти всегда обладают широкими листьями. Поэтому в последние годы 2,4-D завоевало широкую популярность в борьбе с сорняками.

Существуют растительные гормоны, которые стимулируют деление зрелых и в норме неделящихся клеток. Такие соединения оказываются полезными в тех случаях, когда необходимо стимулировать рост массы растения после какого-то внешнего их повреждения. Соединения, которые оказывают такое заживляющее действие, назвали весьма драматически - раневыми гормонами. В качестве примера можно привести вещество, молекула которого содержит цепь из 12 атомов углерода с карбоксильными группами (СООН) на каждом конце и двойной связью между вторым и третьим атомами углерода. Это соединение называется «травматической кислотой».

ГОРМОН РОСТА

 

Что же касается животных, и тем более человека, то у них такой сложный феномен, как рост, нельзя свести к действию какого-то одного гормона. Недостаточность функции любого гормона, участвующего в регуляции биохимических реакций, так или иначе приводит к нарушению роста. Самый разительный пример такого воздействия я уже упоминал. Врожденное отсутствие тиреоидного гормона приводит к карликовости и кретинизму.

Естественно было бы ожидать, что гипофиз, который управляет деятельностью нескольких желез внутренней секреции (из которых мы уже обсудили работу щитовидной железы и надпочечников), участвует и в регуляции процессов роста. Действительно, еще в 1912 году было замечено, что животные, которым удаляли гипофиз, переставали расти. Более того, этот эффект не был всецело обусловлен атрофией других желез, обусловленной отсутствием стимуляции со стороны передней доли гипофиза. В 20-х и 30-х годах были проведены опыты, показавшие, что инъекции экстракта гипофиза растущим

молодым крысам и собакам вызывают продолжение роста после достижения животными нормальных размеров тела. Длительные инъекции приводили у подопытных животных к гигантизму. Более того, действие этих экстрактов на рост продолжалось даже после того, как они были очищены от всяких примесей ТТГ и АКТГ переставали действовать на периферические эндокринные железы. Действие на рост оказалось присущим самому гипофизу.

Очевидно, передняя доля гипофиза вырабатывает гормон, который не действует на другие железы (уникальный в этом плане), а непосредственно влияет на ткани организма, стимулируя их рост. Гормон назвали очень просто и выразительно - гормон роста. Есть у него и более мудреное научное называние - соматотропин или соматотропный гормон, сокращенно СТГ.

О строении гормона роста известно гораздо меньше, чем о строении других гормонов гипофиза. Гормон, выделенный из гипофизов крупного рогатого скота, имеет необычно большой для белковых гормонов молекулярный вес - около 45 000. Представляется, что молекула гормона роста состоит из 370 аминокислотных остатков, организованных в две полипептидные цепи. Обычно белковые гормоны, полученные от разных видов позвоночных, весьма мало отличаются друг от друга и обладают перекрестным действием. Так, инсулин крупного рогатого скота несколько отличается от инсулина свиньи, но оба они проявляют свое специфическое действие у человека и применяются для лечения сахарного диабета. Однако гормон роста, выделенный из гипофизов быков или свиней, не оказывает никакого действия на человека. На рост человека влияет только гормон роста человека и гормоны роста обезьян. Молекулярный вес гормона роста приматов меньше и равен 25 000. Представляется вероятным, что молекулы гормонов роста других биологических видов могут быть расщеплены на фрагменты без существенной утраты физиологической активности.

Гормон роста оказывает многообразное воздействие на обмен веществ (хотя конкретные биохимические механизмы его действия пока неизвестны). Одно из таких воздействий заключается в стимуляции включения аминокислот в белковые цепи в процессе, который совершенно естественным образом сопровождает любой тканевой рост. Кроме того, при введении избыточного количества гормона роста экспериментальным животным у них в крови увеличивается концентрация глюкозы и снижается уровень инсулина. Возможно, это обусловлено тем, что постоянно продолжающийся рост накладывает такие требования па обмен веществ и энергетическое хозяйство организма, что продуцирующие инсулин клетки не выдерживают такой нагрузки и погибают, вследствие чего и развивается сахарный диабет.

Гормон роста стимулирует рост костей во всех направлениях. Секреция гормона роста наиболее интенсивна в детстве и юности, когда организм (ив особенности скелет) активно растет, и подавляется в позднем подростковом периоде, когда, естественно, заканчиваются процессы интенсивного роста. Если секреция гормона роста подавляется в ранней юности, до окончания подросткового периода, то кости формируются раньше срока и рост останавливается. У таких людей, хотя их рост может иногда не превышать трех футов и они могут сохранять детские черты, не развиваются уродства и умственная отсталость. Иногда они даже достигают половой зрелости и представляют собой уменьшенные копии обычных взрослых людей. Самым знаменитым человеком такого рода был Чарльз Стюарт Страттон, которого обессмертил П.Т. Барнум в книге «Мальчик с пальчик». Чарльз имел рост около трех футов, но при этом был сложен абсолютно пропорционально. Умер этот человек в 1883 году в возрасте 45 лет.

Избыточная выработка гормона роста в детском и юношеском возрасте или продолжение секреции после достижения возраста, когда в норме выработка гормона ослабляется, приводит к избыточному росту, или гигантизму. Недавний пример такого рода - Роберт Уодлоу, родившийся в 1918 году в Иллинойсе. Мальчик с детства рос удивительно быстро. Есть фотография, на которой он запечатлен рядом с отцом - мужчиной среднего роста. Роберт, сохранив мальчишеские черты лица, уже тогда был на голову выше своего папы. Роберт умер в возрасте 22 лет, достигнув роста восемь футов и девяти с половиной дюйма.

Иногда случается так, что гипофиз взрослого человека, который давно перестал расти, вдруг по какой-то причине начинает вырабатывать повышенные количества гормона роста. Кости к этому времени уже затвердевают и не могут расти в длину. Несмотря на это, некоторые кости конечностей даже во взрослом состоянии сохраняют в какой-то степени способность к росту и отвечают на воздействие гормона роста. Происходит увеличение кистей и стоп. То же самое происходит и с костями лицевого скелета, особенно с нижней челюстью. В результате этой болезни, которая называется акромегалией («большие конечности», греч.), происходит гротескное изменение черт лица больного.

МЕТАМОРФОЗ

 

Рост - это не просто процесс, в ходе которого происходит удлинение, расширение и утолщение тканей и органов. В течение жизни большинства животных в определенный период наступает момент, когда количественные изменения переходят в качественные. Когда такое внезапное качественное изменение является разительным, приводя к радикальным изменениям формы и строения животного, то говорят о метаморфозе («смена формы», греч.). Выло бы разумно предположить, что метаморфоз происходит под контролем одного или нескольких гормонов. У позвоночных самым типичным примером метаморфоза является превращение головастика в лягушку. В главе 3 я писал, что этот процесс у земноводных контролируется тиреоидным гормоном.

Метаморфоз наблюдается также у многих беспозвоночных животных, особенно заметно он протекает у насекомых. Превращение гусеницы в бабочку столь же живописно и хорошо известно, как и превращение головастика в лягушку. У насекомых на личиночной стадии развития рост происходит, если можно так выразиться, скачкообразно. Внешний скелет препятствует постепенному росту, характерному для позвоночных с их мягкими кожными покровами. Вместо этого периодически происходит сбрасывание жесткой внешней оболочки, и на ее месте вырастает новая, больших размеров, позволяющая насекомому совершить новый рывок роста. Процесс смены старой оболочки на новую называется линькой. Иногда этот процесс называется малоупотребительным термином «экдизис»

Линька насекомых происходит под контролем гормона, вырабатываемого передней грудной железой, расположенной в передней части головогруди. Этот гормон называется экдизоном. Он накапливается и хранится в небольшом органе близ сердца. В мозге насекомого находится группа клеток, которая управляет высвобождением экдизона. Это высвобождение происходит периодически, вызывая линьку. Поэтому экдизон часто называют гормоном линьки насекомых.

После серии линек насекомое вступает в период покоя, в течение которого и происходит метаморфоз. В результате радикальных изменений происходит формирование взрослого половозрелого насекомого. Гусеница, завернувшаяся в кокон, через некоторое время выходит оттуда в виде бабочки. Это типичный, известный всем пример метаморфоза.

Однако возникает законный вопрос: после какой по счету линьки должен наступить метаморфоз? Логично было бы предположить, что этот момент определяется гормоном, который в нужный момент времени нейтрализует действие экдизона, прекращает серию линек и инициирует метаморфоз. Однако в действительности имеет место обратное. В голове насекомого существует парная железа, которая постоянно секретирует один гормон. Этот гормон предотвращает метаморфоз. Насекомое продолжает расти и периодически линять. Когда образование этого гормона уменьшается, а его концентрация падает ниже некоторого критического уровня, следующая линька не происходит, и начинается метаморфоз.

Поскольку этот предупреждающий метаморфоз гормон продлевает личиночную стадию развития насекомого, его назвали личиночным, или ювенильным, гормоном. (В термине «ювенильный» есть некое очарование, кажется, что само это слово окружено ореолом вечной юности. Нет нужды говорить, что ювенильный гормон насекомых не оказывает никакого воздействия на человека.) Правда, химики пока не выяснили строение ни одного гормона насекомых.

Человеческие существа не претерпевают метаморфоз в такой драматичной форме, как гусеницы или головастики, и, тем не менее, в жизни людей наступает такой момент, когда мальчики превращаются в мужчин, а девочки - в женщин. Конечно, это совсем не то, что переход от жаберного дыхания к легочному или от ползания к полету. Но все же удивительно, когда на гладкой коже мальчики начинают расти жесткие волосы, а па плоской груди девочки начинают расти молочные железы.

Эти изменения, сочетающиеся с половым созреванием, но не связанные напрямую с процессами размножения, называются вторичными половыми признаками. Такое развитие представляет собой смягченный вариант человеческого метаморфоза. Надо ожидать, что он находится под контролем одного или нескольких гормонов.

В прошлом делались случайные наблюдения связи между изменениями, наступавшими в юношеском периоде, и перестройкой, которая одновременно происходила в вилочковой железе. Вилочковая железа расположена в верхней части грудной клетки перед легкими и над сердцем, достигая области шеи. У детей она мягкая и розовая, состоит из нескольких долей и имеет большие размеры. К возрасту 12 лет вил очковая железа достигаете весе 40 г. Однако по достижении полового созревания, по мере взросления индивида его вилочковая железа начинает атрофироваться и уменьшаться в размерах. У взрослых па месте железы остается небольшой кусочек жира, пронизанного волокнистыми тяжами соединительной ткани.

Возникает соблазн считать, что, вероятно, вилочковая железа (еще ее называют «тимус») вырабатывает некий гормон - подобие ювенильного гормона насекомых, который предохраняет ребенка от слишком раннего полового созревания. Потом, когда железа атрофируется, выработка гормона прекращается и наступает время созревания. Однако, несмотря на все усилия, исследователям не удалось идентифицировать такой гормон. Удаление тимуса у экспериментальных животных не приводит к быстрому созреванию, а инъекции тимичсских экстрактов не вызывают его задержку. Соблазнительная теория была оставлена и забыта.

Оставалась, однако, еще одна возможность. Тимус состоит из лимфоидной ткани, подобно селезенке, нёбным миндалинам и лимфатическим узлам. Представилось вероятным, что вилочковая железа функционирует как лимфоидная ткань и участвует в процессах борьбы с бактериальными инфекциями. Возможно, она продуцирует антитела (белковые молекулы, предназначенные для нейтрализации бактерий, бактериальных токсинов и вирусов), и если это так, то роль гимуса трудно переоцепить, так как пет задачи важнее, чем обеспечивать иммунитет организма.

Эта теория получила подтверждение в 1962 году, когда Жак Миллер, работавший в Лондоне, показал, что тимус не только вырабатывает антитела, но и является органом, который в организме делает это первым. Со временем клетки тимуса мигрируют в другие части организма, например в лимфатические узлы. К наступлению периода полового созревания вилочковая железа исчезает не потому, что ее функция исчерпалась, а потому, что ее ткань распределилась по другим органам.

Эту точку зрения подкрепляет тот факт, что мыши, которым вскоре после рождения удаляли тимус, погибали спустя несколько месяцев, потому что у них оказывались недоразвитыми некоторые ткани, участвующие в иммунных процессах. Если же тимус удаляли по прошествии трех недель после рождения, то такого неблагоприятного эффекта не наблюдали. Очевидно, к этому времени достаточное количество клеток тимуса успевает мигрировать в лимфатические узлы, обеспечивая способность животного отвечать на вторжение инфекционных агентов. Вероятно, распространение клеток тимуса по организму стимулируют те гормоны, которые обусловливают половое созревание, поскольку тимус подвергается быстрой атрофии после 12 - 13 лет.

Удаление тимуса вскоре после рождения животного делает его способным не отторгать пересаженные от других особей органы и ткани. В обычных условиях кусочки пересаженной кожи отторгаются организмом хозяина, который реагирует образованием антител на чужеродный белок. Если пересадить лишенной вилочковой железы мыши тимус другого животного, то она вновь обретает способность отторгать трансплантат и продуцировать антитела. Если тимус пересажен от какой-либо определенной лиши; мышей, то животное-реципиент не отторгает кожные трансплантаты мышеи этих линий. Есть отдаленная надежда, что в будущем с помощью частичной перс садки вилочковой железы удастся решить проблему пересадки органов и тканей у человека.

АНДРОГЕНЫ

 

Органы, непосредственно связанные с появлением вторичных половых признаков, состоят из клеток, необходимых для размножения. К таким органам относятся яички, вырабатывающие сперму у мужчин, и яичники, вырабатывающие яйцеклетки у женщин. Эти железы объединяются термином «гонады» («порождающие», греч.), хотя чаще их называют половыми железами. Связь между гонадами и изменениями, связанными с созреванием представляется настолько логичной, что се можно принять без доказательств.

Когда-то, на заре истории, пастухи, вероятно сначала в результате случайных наблюдений, заметили, что самцы, которым вскоре после рождения удаляли тестикулы (кастрировали), доживали до взрослого состояния, но выглядели совершенно не так, как особи, сохранившие половые железы. Кастрированные животные не были способны к оплодотворению и не проявляли никакого интереса к половой активности. Кроме того, такие животные становились менее агрессивными, и их было гораздо легче заставить работать, чем некастрированных самцов. После кастрации самый свирепый бык превращался в кроткое, смирное животное, необузданный жеребец становился терпеливым мерином, а самый жилистый петух - жирным каплуном.

Увы, было бы наивно полагать, что ту же операцию не применяли к людям. Кастрированные мужчины, евнухи («стерегущие ложе», греч.), назывались так потому, что их главной обязанностью было охранять гаремы состоятельных людей, а кастрировали несчастных, чтобы они не смогли воспользоваться выгодами своего столь завидного положения.

Если кастрация выполняется в раннем детстве, перед появлением вторичных половых признаков, то они не развиваются. У евнухов не росла борода, хотя на голове волосяной покров сохранялся, и, более того, евнухи не лысели. (Облысение у мужчин является отчасти вторичным половым признаком и имеет отношение к концентрации половых гормонов в крови, хотя для того, чтобы быть полноценным мужчиной, не обязательно становиться лысым.)



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: