Структурная схема и классификация выпрямителей.




Занятие № 17 лабораторное

Лабораторная работа № 7

Тема Электронная схема однофазного МНВ (мостового неуправляемого выпрямителя) Исследование, измерение основных параметров

Цель работы: Ознакомление, исследование свойств, измерение основных параметров электронных приборов

Задание:

1 В тетради записать дату и тему занятия.

2 На листах в клетку формата А4, с основной надписью 40х185 мм оформить отчет по работе.

3 В отчете привести ответы на вопросы и схему и принцип работы выпрямительной установки, собранной по мостовой схеме. Где применяется?

Теоретическая часть

Общие принципы построения выпрямительных устройств.

Производство и распределение электрической энергии в основном осуществляется на переменном токе, вследствие простоты трансформации напряжения. Однако значительная часть производимой электрической энергии (30-35%) используется на постоянном токе, в том числе и для передачи на расстояния.

Выпрямитель – это электротехническое устройство, предназначенное для преобразования переменного напряжения в постоянное.

Основными элементами полупроводниковых выпрямителей являются трансформатор и вентили, с помощью которых обеспечивается одностороннее протекание тока в цепи нагрузки, в результате чего переменное напряжение преобразуется в пульсирующее. Для сглаживания пульсаций выпрямленного напряжения к выходным зажимам выпрямителя подключают электрический сглаживающий фильтр. Для регулирования или стабилизации выпрямленного напряжения и тока потребителя к выходным зажимам фильтра подключают регулятор или стабилизатор (стабилизатор может быть включён и на стороне переменного тока выпрямителя).

Режимы работы и параметры отдельных элементов выпрямителя, фильтра, регулятора и стабилизатора согласуются с заданными условиями работы потребителя постоянного тока, поэтому основная задача теории выпрямительных устройств сводится к определению расчётных соотношений, позволяющих по заданному режиму работы потребителя определить электрические параметры элементов стабилизатора, регулятора, фильтра, а также вентилей и трансформатора выпрямителя и затем произвести выбор этих элементов по каталогу или, если это необходимо, рассчитать их.

Структурная схема и классификация выпрямителей.

Выпрямитель можно представить в виде обобщенной структурной схемы (рис. 1) и структурной схемы с протекающими в нем напряжениями и токами (рис. 2), в которую входят:

· силовой трансформатор (СТ),

· вентильный блок (ВБ),

· фильтрующее устройство (ФУ),

· цепь нагрузки (Н), в которую может входить стабилизатор напряжения (СН).

Рисунок 1- Обобщенная структурная схема выпрямителя.

 

Рисунок 2 -. Структурная схема выпрямителя с протекающими в нем напряжениями и токами

Силовой трансформатор служит для согласования входного и выходного напряжений выпрямителя. Возможны различные соединения обмоток трансформатора соответственно с различными схемами выпрямления. Напряжение вторичной обмотки трансформатора U 2 определяет значение выпрямленного напряжения Uн (или Ud).

Трансформатор позволяет одновременно гальванически развязать питающую сеть U 1, I 1 с частотой f 1, и цепь нагрузки с Uн, Iн (или Ud, Id). В последнее время в связи с появившейся возможностью разрабатывать и изготавливать высоковольтные инверторы, работающие на высокой частоте и при непосредственном выпрямлении напряжения сети, используются беcтрансформаторные схемы выпрямления, в которых вентильный блок присоединяется непосредственно к первичной питающей сети.

Вентильный блок выпрямляет переменный ток, подключая вторичное напряжение соответствующей фазы трансформатора к цепи постоянного тока. В вентильном блоке используются, как правило, полупроводниковые диоды или сборки на их основе. На выходе вентильного блока получают знакопостоянное напряжение с высоким уровнем пульсаций, определяемым только числом фаз питающей сети и выбранной схемой выпрямления.

Фильтрующее устройство обеспечивает требуемый уровень пульсаций выпрямленного тока в цепи нагрузки. В качестве ФУ используются последовательно включаемые резистор или сглаживающий дроссель и параллельно включаемые конденсаторы. Иногда ФУ строится по более сложным схемам. В выпрямителях малой мощности установка резистора или дросселя не обязательна.

При использовании многофазных (чаще всего трехфазных) схем выпрямления уровень пульсаций естественно снижается, и облегчаются условия работы ФУ.

Стабилизатор напряжения служит для уменьшения внешних воздействий, таких как: изменение напряжения питающей сети, изменение температуры, частоты и т.д.

Полупроводниковые выпрямители можно классифицировать по следующим признакам:

1) по выходной мощности (маломощные - до 600 Вт, средней мощности - до 100 кВт, и большой мощности - более 100 кВт);

2) по числу фаз источника (однофазные, многофазные);

3) по пульсности (р) выпрямителя, определяемой числом полупериодов протекания тока во вторичной обмотке трансформатора за полный период напряжения U1;

4) по числу знакопостоянных импульсов в кривой выпрямленного напряжения U2 за период питающего напряжения:

- однополупериодные;

- двухполупериодные;

- m-полупериодные.

Выпрямители могут быть построены на управляемых вентилях (тиристорах, транзисторах) – управляемые выпрямители и на неуправляемых вентилях (диодах) – неуправляемые выпрямители.

Для работы и расчета выпрямителя принципиальное значение имеет характер нагрузки включенной на выходе выпрямителя. Различают следующие режимы работы выпрямителя:

а) на активную нагрузку;

б) на активно-индуктивную нагрузку;

в) на активно-емкостную нагрузку;

Разные формы потребляемых из сети токов и их продолжительность при различном характере нагрузки выпрямителя приводит к тому, что методы расчетов выпрямителей существенно различаются.

Расчет выпрямителя сводится к выбору схемы выпрямления, типа диодов, определению электромагнитных нагрузок на обмотках трансформатора, диодах и элементах сглаживающего фильтра, а также энергетических показателей.

Выбор схемы выпрямителя зависит от ряда факторов, которые должны учитываться в зависимости от требований, предъявляемых к выпрямительному устрой­ству. К ним относятся:

- величины выпрямленного напряжения и мощности;

- частота и величина пульсации выпрямленного напряжения;

- число диодов и величина обратного напряжения на них;

- коэффициент полезного действия (к.п.д.);

- коэффициент мощности и другие энергетические показатели.

При расчете выпрямителя большое значение имеет также коэффициент использования трансформатора по мощности, который определяется как:

,

 

где Ud, Id - средние значения выпрямленного напряжения и тока, U1, I1 - действующие значения первичного напряжения и тока, U2, I2 - действующие значения вторичного напряжения и тока.

При увеличении коэффициента использования трансформатора габариты выпрямителя в целом уменьшаются, а коэффициент полезного действия возрастает.

В неуправляемых выпрямителях используют неуправляемые вентили — диоды, которые начинают проводить ток, как только к ним прикладывают напряжение, действующее в проводящем направлении. Диоды имеют двухслойную р-я-р-структуру, для них характерна высокая проводимость в прямом направлении и низкая — в обратном.

В преобразователях, предназначенных не только для выпрямления, но и для регулирования выпрямленного напряжения и инвертирования (т.е. преобразования постоянного напряжения в переменное) используют полупроводниковые управляемые вентили — тиристоры.

Полупроводниковые приборы подразделяют на различные типы по исходному материалу, назначению, конструкции, мощности, виду охлаждения, диапазону рабочих частот и т.д. В силовых цепях электроподвижного состава используют мощные (силовые) кремниевые полупроводниковые приборы с принудительным воздушным охлаждением.

Силовые диоды способны выдерживать высокое (до 4000 В) обратное (прикладываемое в непроводящем направлении) напряжение при незначительных токах утечки (до 5 мА).

Неуправляемые выпрямители широко применяют на электровозах переменного тока для питания тяговых двигателей в режиме тяги. Они преобразуют переменный ток в постоянный (пульсирующий). Выпрямители могут быть соединены с обмоткой трансформатора различными способами и вследствие этого имеют различную структуру. Самое простое включение показано на рис. 3, где выпрямитель состоит из одного диода.

Электродвижущая сила во вторичной обмотке трансформатора, как и в первичной, изменяется по синусоиде. Когда ЭДС, а следовательно, и напряжение U, приложенное к выпрямителю, во вторичной обмотке действуют слева направо (на рис. 3, а, направление показано сплошной стрелкой), потенциал анода диода VD выше, чем катода, и через двигатель проходит ток. При изменении направления ЭДС на противоположное выпрямитель не пропускает ток. Таким образом, по цепи нагрузки проходит не постоянный, а пульсирующий ток: он постоянен только по направлению (рис. 3, б). Рассмотренная схема одно- полу периодного выпрямления на электровозе не используется. Для того чтобы через выпрямитель проходил ток в оба полупериода, применяют схему двухполупериодного выпрямления либо с нулевым выводом вторичной обмотки трансформатора, либо мостовую.

В схеме с нулевым выводом вторичную обмотку трансформатора делят на две равные части, выпрямитель и двигатель включают, как показано на рис. 4, а. Когда ЭДС, а следовательно, и напряжение в первый полупериод направлены слева направо (сплошная стрелка на рис. 4, а), проводит ток (открыт) диод VD2, а диод VD1 закрыт. К нему приложено напряжение, действующее в непроводящем направлении. При изменении направления ЭДС трансформатора на противоположное ток проводит вентиль VD1. Таким образом, в течение обоих полупериодов через двигатель проходит ток, изменяющийся от нуля до амплитудного значения и вновь до нуля. Недостаток такой схемы выпрямления заключается в том, что в каждый полупериод работает только половина обмотки трансформатора, а это приводит к плохому использованию, а значит, и большему расходу меди.

 

Рисунок 3 - Схема однополупериодного выпрямления (а) и кривая выпрямленного напряжения (б)

Выпрямительная установка, собранная по мостовой схеме, состоит из четырех плеч (см. рис. 4, б). Когда напряжение во вторичной обмотке трансформатора действует слева направо, ток проходит через диод VD1, нагрузку (двигатель), диод VD3 в обмотку трансформатора (сплошные стрелки). При изменении направления напряжения (штриховые стрелки) ток проходит через диод VD2, нагрузку, диод VD4 и возвращается в обмотку трансформатора. Следовательно, как и в предыдущей схеме, ток в каждый полупериод проходит через нагрузку в одном направлении (см. рис. 4, в).

Рисунок 4 -Схемы двухполупериодного выпрямления и б) кривая выпрямленного напряжения (в) и схема плеча выпрямительной установки восьмиосного электровоза (г)

В мостовой схеме вторичная обмотка тягового трансформатора работает полностью. На первый взгляд кажется, что число вентилей в этой схеме удваивается. Однако напряжение, приходящееся на каждый диод, уменьшается в 2 раза. Поскольку каждое плечо моста VD1 — VD4 имеет несколько последовательно включенных вентилей и несколько параллельных ветвей, то общее число диодов, необходимое для выпрямителя, питающего тяговые двигатели и собранного по мостовой схеме (см. рис. 4, б), равно числу диодов в схеме рис. 4, а. Так, один выпрямитель электровоза ВЛ80Т(С) имеет в каждом плече моста 12 параллельных ветвей (см. рис. 4, г), каждая из которых содержит четыре последовательно включенных лавинных вентиля.

Следовательно, в одном выпрямителе имеется 4—4—12= 192 вентиля. Выпрямитель рассчитан на номинальные выпрямленные ток 3200 А и напряжение 1350 В. Он питает два тяговых двигателя. Поэтому на восьмиосных электровозах установлено четыре таких выпрямителя; общее число вентилей в них равно 708. Коэффициент полезного действия выпрямителя 99 %. Выпрямитель размещен в двух шкафах и работает только с принудительным охлаждением. Каждый выпрямитель снабжается довольно сложной защитой.

Мощность однофазных неуправляемых выпрямителей переменного тока колеблется от десятков до нескольких сотен ватт. Основными схемами однофазных выпрямителей являются: однополупериодная и двухполупериодная (мостовая или со средней точкой). ^ Однофазная однополупериодная схема выпрямления (рис. 5, а) с активной нагрузкой является простейшей из известных схем выпрямления. Она состоит из силового трансформатора Тр, одного вентиля (диода) VD и нагрузки Rн. Первичная обмотка трансформатора включена в сеть переменного тока с напряжением u 1; к вторичной обмотке с напряжением u 2 последовательно подключены диод VD и нагрузка (резистор Rн). Временные диаграммы напряжения u 2 вторичной обмотки трансформатора, напряжения на нагрузке uн и на вентиле ud представлены на рис. 5, б, в г.

Ток iн в нагрузке протекает только при положительной полуволне вторичного напряжения u 2трансформатора, т. е. когда напряжение на аноде диода более положительное, чем на его катоде. При этом напряжение на диоде Uпр < 2 В. При отрицательной полуволне u 2 диод закрыт, максимальное обратное напряжение на диоде Uобр.max » U 2 m . Ток в нагрузке Rн протекает только в один полупериод синусоидального напряжения, отсюда название выпрямителя – однополупериодный.

Среднее выпрямленное напряжение и ток за период .

Амплитуда Um.ог основной гармоники выпрямленного напряжения, определенная из разложения в ряд Фурье, Тогда коэффициент пульсации

Однофазные полупроводниковые выпрямители используют для питания устройств, требующих малого тока и высокого напряжения, например, для питания электронно-лучевых трубок, трубок рентгеновских аппаратов и др. К недостаткам этих выпрямителей следует отнести униполярный ток, который, проходя через вторичную обмотку, намагничивает сердечник трансформатора, изменяя его характеристики и уменьшая КПД; малое значение выпрямленного напряжения (Uср » 1/3 U 2 m ); высокий уровень пульсаций (qn = 1,57) и большое обратное напряжение на диоде (Uобр » U 2 m ).

Мостовая схема двухполупериодного выпрямителя (рис. 6, а) состоит из трансформатора Тр и четырех диодов, собранных по мостовой схеме. Одна из диагоналей моста соединена с выводами вторичной обмотки трансформатора, вторая диагональ – с нагрузкой Rн. Положительным полюсом нагрузки является общая точка соединения катодов вентилей, отрицательным – точка соединения анодов. Временные диаграммы выпрямленного напряжения uн и тока iн приведены на рис. 6, б. В положительный полупериод синусоидального напряжения u 2, когда точка 1 находится под положительным, а точка 2 под отрицательным потенциалами, ток i 2 ' протекает через вентиль VD 1, сопротивление нагрузки Rн и вентиль VD 3. Вентили VD 2 и VD 4 в этот момент закрыты, так как находятся под обратным напр яжением. Во второй полупериод, когда в точке 1 вторичной обмотки отрицательный потенциал, а в точке 2 – положительный, ток i 2'' протекает через вентиль VD 2, резистор Rн и вентиль VD 4 в направлении, указанном стрелками с одним штрихом. Вентили VD 1 и VD 3 в этот момент закрыты, так как находятся под обратным напряжением. Таким образом, токи i 2 ' и i 2'', протекающие через нагрузку Rн, совпадают по направлению. Кривые напряжения и тока на нагрузке (см. рис. 6, б) повторяют (при прямом напряжении на диодах Uпр » 0) по величине и форме выпрямленные полуволны напряжения и тока вторичной обмотки трансформатора. Они пульсируют от нуля до максимального значения U 2 m .

Среднее значение выпрямленного напряжения и тока (постоянные составляющие): , где

Амплитуда основной (второй) гармоники выпрямленного напряжения, определенная из разложения в ряд Фурье,

Тогда коэффициент пульсации

Обратное напряжение на вентиле

В двухполупериодной схеме выпрямления в сравнении с однополупериодной значительно лучше используется трансформатор, меньше коэффициент пульсации (qп » 0,67), хотя его величина остается значительной.

Вопросы:

1 Пояснить назначение элементов схемы выпрямителя.

2 Какие элементы можно использовать в качестве вентилей?

3 Перечислить известные вам схемы выпрямителей.

4 От чего зависит частота пульсаций выпрямленного напряжения?

5 Дать определение коэффициентов пульсаций и сглаживания

6 Схему и принцип работы выпрямительной установки, собранной по мостовой схеме. Где применяется?

Подробнее здесь: https://emkelektron.webnode.com/news/skhjemy-i-raschjet-vyprjamitjeljej-razvjernuto-i-v-kachjestvje-shpargalka/

Обратная связь: выполненные задания, вопросы отправляем в комментариях или личные сообщения преподавателю или на электронную почту колледжа dktidistanc@mail.ru



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-12-05 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: