Преимущества и недостатки имитационного моделирования




Виды имитационного моделирования

Агентное моделирование – относительно новое (1990е-2000е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот. Когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы.

Цель агентных моделей – получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении ее отдельных активных объектов и взаимодействии этих объектов в системе. Агент – некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.

Дискретно-событийное моделирование – подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие как: «ожидание», «обработка заказа», «движение с грузом», «разгрузка» и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений – от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов. Основан Джеффри Гордоном в 1960х годах.

Системная динамика – парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии. Метод основан Форрестером в 1950 годах. [1]

Популярные системы имитационного моделирования:

· AnyLogic,

· Aimsun,

· Arena

· eM-Plant

· Powersim

· GPSS

· NS-2

· Transyt

 

Преимущества и недостатки имитационного моделирования

Ниже приводится перечень доводов в пользу применения имитационного моделирования, а также случаев, когда его применение противопоказано (хотя мы сразу же должны отметить, что этот перечень ни в коем случае нельзя считать исчерпывающим – скорее мы перечисляем общеизвестные преимущества и недостатки имитационного моделирования).

Преимущества

1. Разработка имитационной модели системы зачастую позволяет лучше понять реальную систему.

2. В ходе моделирования возможно «сжатие» времени: годы практической эксплуатации реальной системы можно промоделировать в течение нескольких секунд или минут.

3. Моделирование не требует прерывания текущей деятельности реальной системы.

4. Имитационные модели носят намного более общий характер, чем математические модели; их можно использовать в тех случаях, когда для проведения стандартного математического анализа нет надлежащих условий.

5. Моделирование можно использовать в качестве средства обучения персонала работе с реальной системой.

6. Моделирование обеспечивает более реалистичное воспроизведение системы, чем математический анализ.

7. Моделирование можно использовать для анализа переходных процессов, тогда как математические модели для этой цели не подходят.

8. В настоящее время разработано множество стандартизованных моделей, охватывающих широкий спектр объектов реального мира.

9. Имитационное моделирование отвечает на вопросы типа «а что, если...».

Недостатки

1. Несмотря на то, что на разработку имитационной модели системы может уйти довольно много времени и труда, нет никакой гарантии, что модель позволит получить ответы на интересующие нас вопросы.

2. Нет никакого способа доказать, что работа модели полностью соответствует работе реальной системы. Моделирование связано с многочисленными повторениями последовательностей, которые основываются на генерации случайных чисел, имитирующих наступление тех или иных событий. Явно стабильная система может – при неблагоприятном сочетании событий – «пойти вразнос» (хотя это и весьма маловероятно).

3. В зависимости от системы, которую мы хотим моделировать, построение модели может занять от одного часа до 100 человеко-лет. Моделирование сложных систем может оказаться весьма дорогостоящей затеей и занять немало времени.

4. Моделирование может быть менее точным, чем математический анализ, поскольку – подчеркнем еще раз – в его основу положена генерация случайных чисел. Если реальную систему можно представить математической моделью, предпочтение следует отдать именно такому способу моделирования.

5. Для «прогона» сложных моделей требуется довольно значительное компьютерное время.

6. Для метода имитационного моделирования по-прежнему характерно недостаточное использование стандартизованных подходов (хотя некоторый прогресс в преодолении этого недостатка уже намечается). В результате модели одной и той же реальной системы, построенные разными аналитиками, могут иметь мало общего между собой. [3]

В имитационном моделировании различают два метода:

· метод статистического моделирования;

· метод статистических испытаний (Монте–Карло).

Метод Монте–Карло – численный метод, который применяется для моделирования случайных величин и функций, вероятностные характеристики которых совпадают с решениями аналитических задач. Состоит в многократном воспроизведении процессов, являющихся реализациями случайных величин и функций, с последующей обработкой информации методами математической статистики.

Если этот прием применяется для машинной имитации в целях исследования характеристик процессов функционирования систем, подверженных случайным воздействиям, то такой метод называется методом статистического моделирования. Метод имитационного моделирования применяется для оценки вариантов структуры системы, эффективности различных алгоритмов управления системой, влияния изменения различных параметров системы. Имитационное моделирование может быть положено в основу структурного, алгоритмического и параметрического синтеза систем, когда требуется создать систему с заданными характеристиками при определенных ограничениях. [5]


 

Список использованной литературы:

 

1. Зайцева Н.А. Математическое моделирование: Учебное пособие. – М.: РУТ (МИИТ), 2017. – 110 с.

1.Козин Р.Г. Математическое моделирование: примеры решения задач: Учебно-методическое пособие. – М.: НИЯУ МИФИ, 2010. – 176с.

2. Звонарев С.В. Основы математического моделирования: учебное пособие / С.В. Звонарев. – Екатеринбург: Изд-во Урал. ун-та, 2019. – 112 с.

3. Моисеева Л.Т. Методы математического моделирования процессов в машиностроении. Курс лекций. Казань: Казанский государственный технический университет, 2012. - 48с.

4. Тихонов Н.А., Токмачев М.Г. Основы математического моделирования / Учебное пособие. – М.: Физический факультет МГУ, 2013. – 84 с.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-12-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: