Рис. 6.5. Компаратор на операционном усилителе
Здесь к неинвертирующему входу ОУ подключено опорное напряжение Uоп, относительно которого контролируется изменение входного напряжения Uвх. Выходное напряжение Uвых в зависимости от соотношения (Uоп - Uвх) принимает значения +Еп или –Еп, реализуя выражение .
Определим зависимость выходного напряжения компаратора от величины входного при заданной величине опорного напряжения Uоп, которое установим, например, равным 5В. Uвх будем варьировать от –∞ до +∞, задавая ему следующие значения:
Uвх =-10В, отсюда Uвых =К(5-(-10))=15К =+Eп;
Uвх =-5В, отсюда Uвых =К(5-(-5))=10К =+Eп;
Uвх =0В, отсюда Uвых =К(5-0)=5k =+ Eп;
Uвх =4,9В, отсюда Uвых =К(5-(4,9))=0,1k =+ Eп;
Uвх =5,1В, отсюда Uвых =К(5-5,1)=-0,1k =- Eп;
Uвх =10В, отсюда Uвых =К(5-10)=-5k =- Eп;
Uвх =15В, отсюда Uвых =К(5-15)=-10k =- Eп.
График выходной характеристики представлен на рис.6.6:
Рис.6.6. Выходная характеристика компаратора
по рис.6.5
Из приведённого расчёта и графика видно, что пока Uоп>Uвх, выходное напряжение компаратора остаётся постоянным и равным +Еп. В диапазоне изменения Uвх от 4,9В до 5,1В происходит изменение знака разности DU на входе операционного усилителя, что вызывает изменение знака выходного напряжения, которое далее остаётся постоянным и равным –Еп.
Выходной сигнал компаратора почти всегда действует на входы логических цепей и потому согласуется по уровню и мощности с их входами. Таким образом, компаратор - это элемент перехода от аналоговых сигналов к цифровым, поэтому его иногда называют однобитным аналого-цифровым преобразователем.
Неопределенность состояния выхода компаратора при нулевой разности входных сигналов не требует уточнения, так как реальный компаратор всегда имеет либо конечный коэффициент усиления, либо создаётся петля гистерезиса (рис.6.3,б). Рассмотрим более подробно процесс переключения компаратора из одного состояния в другое при изменении Uвх=ƒ(t) по рис.6.7, где контурная линия определяет среднее значение Uвх, а точки около неё – случайные отклонения за счёт неизбежного «шума» в реальных условиях.
|
Рис. 6.7. Процессы переключения
компаратора
Чтобы выходной сигнал компаратора изменился на конечную величину |U1вых - U0вых| при бесконечно малом изменении входного сигнала, компаратор должен иметь бесконечно большой коэффициент усиления (эпюра 1 на рис. 6.7) при полном отсутствии шумов во входном сигнале. Такую характеристику можно имитировать двумя способами - или просто использовать усилитель с очень большим коэффициентом усиления, или ввести положительную обратную связь.
Рассмотрим первый путь. Как бы велико усиление не было, при Uвх, близком к нулю, характеристика будет иметь вид эпюры 1 на рис. 6.7. Это приведет к двум неприятным последствиям. Прежде всего, при очень медленном изменении Uвх выходной сигнал также будет изменяться замедленно, что плохо отразится на работе последующих логических схем (эпюра 2 на рис. 6.7). Еще хуже то, что при таком медленном изменении Uвх около нуля выход компаратора может многократно с большой частотой менять свое состояние под действием помех (так называемый "дребезг", эпюра 3 рис.6.7). Это приведет к ложным срабатываниям в логических элементах и к огромным динамическим потерям в силовых ключах. Для устранения этого явления обычно вводят положительную обратную связь, которая обеспечивает формирование в переходной характеристике компаратора гистерезис (рис.6.3,б). Наличие гистерезиса хотя и вызывает некоторую задержку в переключении компаратора (эпюра 4 на рис. 6.7), но существенно уменьшает или даже устраняет дребезг Uвых.
|
Недостаток выходной характеристики компаратора по схеме рис. 6.5, у которой выходное напряжение изменяется от +Еп до -Еп, устраняется в схеме по рис. 6.8. В качестве компаратора может быть использован операционный усилитель (ОУ), включенный по схеме инвертирующего сумматора. Однако вместо резистора в цепи обратной связи включены параллельно стабилитрон VD1 и диод VD2.
Рис. 6.8. Схема компаратора на
инвертирующем сумматоре
Пусть R1=R2 =10 кОм, RVD2 =50 Ом. Если Uвх - Uоп > 0, выходное напряжение ОУ отрицательно и через открытый диод VD2 замыкает цепь обратной связи усилителя, устанавливая его коэффициент усиления согласно (5.3), равным . Выходное напряжение схемы - небольшое отрицательное напряжение, равное падению напряжения на открытом диоде. При Uвх - Uоп < 0 на стабилитроне установится напряжение, равное его напряжению стабилизации Uст. Это напряжение должно соответствовать единичному логическому уровню цифровых интегральных микросхем (ИМС), входы которых подключены к выходу компаратора. Таким образом, выход ОУ принимает два состояния – логической единицы Uст и логического нуля – около 0 вольт, причем в обоих усилитель работает в линейном режиме.
Многие типы ОУ не допускают сколько-нибудь существенное входное дифференциальное напряжение. Включение по схеме рис. 6.8 обеспечивает работу ОУ в режиме компаратора практически с нулевыми дифференциальными и синфазными входными напряжениями. Недостатком данной схемы является относительно низкое быстродействие, обусловленное необходимостью частотной коррекции, так как ОУ работает в линейном режиме со 100%-ной обратной связью. Используя для построения компаратора обычные ОУ, трудно получить время переключения менее 1 мкс.
|
В заключение перечислим некоторые особенности компараторов по сравнению с ОУ:
1. Несмотря на то, что компараторы очень похожи на операционные усилители, в них почти никогда не используют отрицательную обратную связь, так как в этом случае весьма вероятно (а при наличии внутреннего гистерезиса - гарантировано) самовозбуждение компараторов.
2. В связи с тем, что в схеме нет отрицательной обратной связи, напряжения на входах компаратора неодинаковы.
3. Из-за отсутствия отрицательной обратной связи входное сопротивление компаратора относительно низко и может меняться при изменении входных сигналов.
4. Выходное сопротивление компараторов значительно и различно для разной полярности выходного напряжения.
Двухпороговый компаратор (или компаратор "с окном") фиксирует, находится ли входное напряжение между двумя заданными пороговыми напряжениями или вне этого диапазона. Для реализации такой функции выходные сигналы двух компараторов необходимо подвергнуть операции логического умножения (рис. 6.9,а). Как показано на рис. 6.9,б, на выходе логического элемента
Рис. 6.9. Схема двухпорогового компаратора (а) и диаграмма его работы (б)
единичный уровень сигнала будет иметь место тогда, когда выполняется условие U1 < Uвх < U2, так как в этом случае на выходах обоих компараторов будут единичные логические уровни. Такой компаратор выпускается в виде ИМС mА711 (отечественный аналог - 521СА1).
Рис. 6.10. Простейший aналого-цифровой
преобразователь на компараторах напряжения
Основное применение компараторы напряжения находят в устройствах сопряжения цифровых и аналоговых сигналов. Простейшим примером такого применения является аналого-цифровой преобразователь параллельного типа, приведенный на рис 6.10. В нем использованы четыре компаратора Kl…K4 и резистивный делитель опорного напряжения Uon. При одинаковых значениях сопротивлений в резистивном делителе на инвертирующие входы компараторов подано напряжение nUo/4, где n — порядковый номер компаратора. На неинвертирующие входы компаратора подано напряжение Uвх. В результате сравнения входного напряжения с опорными напряжениями на инвертирующих входах компараторов на выходах компараторов образуется унитарный цифровой код входного напряжения. При помощи цифрового преобразователя кода этот код можно преобразовать в двоичный.
Контрольные вопросы.
1. Что такое компаратор и его назначение? Его условное графическое изображение со стробированием по уровню и фронту.
2. Передаточная характеристика компаратора без и с гистерезисом. Цель формирования гистерезиса и его реализация?
3. Что такое напряжение гистерезиса, чем можно его обеспечить?
4. Как определить время переключения компаратора? Как оно изменяется в зависимости от превышения Uвх над опорным напряжением?
5. Построение компаратора на ОУ. Его передаточная характеристика.
6. Как можно определить передаточную характеристику компаратора на ОУ расчётным путём?
7. Работа компаратора по рис.6.8. Преимущества этой схемы.
8. Двухпороговый компаратор по рис.6.9 – назначение, функционирование, реализация логического умножения.
Лекция 7. Коммутаторы аналоговых
сигналов
Устройство аналоговых ключей и коммутаторов сигналов. Коммутация сигналов является распространенным методом, с помощью которого сигналы, поступающие от нескольких источников, объединяются в определенном порядке в одной линии. После соответствующей обработки эти сигналы при помощи другого коммутатора могут быть направлены в различные исполнительные устройства. Упорядоченный ввод и вывод сигналов осуществляется, как правило, при помощи адресации источников и приемников сигналов, а также связанных с передачей сигналов коммутаторов. Общая структурная схема связи источников и приемников сигналов через коммутатор показана на рис.7.1.
Рис.7.1. Структурная схема коммутации источников и приёмни-
ков сигналов
Коммутатор состоит из определённым образом связанных электронных ключей, выполненных на диодах или транзисторах. Ключи аналоговых сигналов должны обеспечить неискаженную передачу сигналов от источников к приемникам. Однако в процессе передачи ключи могут исказить передаваемый сигнал. Эти искажения в первую очередь зависят от свойств самих ключей, но также и от сигналов управления. Сигналы из цепи управления могут наложиться на передаваемый сигнал, иначе говоря, возможны помехи из цепи управления на линии передачи сигналов.
Обычно устройство управления коммутатором является цифровым и действует либо по заранее установленной программе, либо под управлением микропроцессоров или мини-ЭВМ. В последнем случае программа управления коммутатором может быть изменена. Для выбора определенного ключа и назначения его функции (т. е. включения или отключения) используется адресный дешифратор команд. Кроме этого, при передаче сигналов возможны временные задержки, связанные или с быстродействием самих ключей, или с быстродействием устройства управления. И в том, и в другом случае возможны потери частей передаваемых сигналов или их искажение, например, растягивание фронтов сигналов или изменение их длительности.
Для исключения потерь при передаче сигналов, а также для согласования сопротивлений источников и приемников сигналов в состав коммутаторов могут входить различные согласующие или нормирующие усилители. Коэффициент передачи этих усилителей может быть или фиксированным, или устанавливаемым при помощи устройства управления.
Если источники и приемники сигналов могут меняться местами, то коммутатор должен быть двунаправленным, т. е. обеспечивать передачу сигналов в обоих направлениях. Такая проблема возникает, например, при записи аналоговых сигналов в устройстве памяти, которое в этом случае является приемником информации, и считыванием сигналов из устройства памяти, которое становится тогда источником сигнала.
Упрощенные схемы идеальных и реальных ключей в замкнутом и разомкнутом состояниях приведены на рис.7.2. Эти схемы отражают работу ключей в статическом режиме и не могут быть использова- ны для анализа помех из цепи управления или динамических режимов самих ключей. Замкнутый ключ (рис.7.2,а) имеет некоторое внутреннее сопротивление r0, которое не является постоянным, а
Рис.7.2. Схемы замещения ключа в замкну-
том (а) и разомкнутом (б) состояниях
сложным образом может зависеть от тока iк через ключ. Последовательно с сопротивлением действует источник остаточного напряжения е0, который также зависит от тока.
Разомкнутый ключ (рис.7.2, б ) можно заменить сопротивлением утечки rу и источником тока утечки iу, которые в общем случае могут зависеть от напряжения на разомкнутом ключе Uк.
Динамические модели ключей могут включать различные паразитные емкости и индуктивности. С помощью этих схем замещения возможен анализ быстродействия ключей или расчет коммутационных помех из цепи управления. Индуктивности ключей могут сказываться на довольно высоких частотах и, в основном, обусловлены их выводами.
В качестве примера на рис.7.3 приведена схема ключа на полевом транзисторе с изолированным затвором. Очевидно, что при подаче на затвор ключа импульсного сигнала управления Uуп помехи через паразитные емкости ключа Сзс и Сзи будут появляться на сопротивлении открытого ключа. Кроме того, на прохождение сигнала через ключ будут влиять переходные процессы в транзисторном ключе.
Рис.7.3. Схема ключа на полевом
транзисторе с изолированным затво-
ром (а) и его схема замещения (б)
При коммутации источника сигнала и нагрузки можно использовать как одиночные ключи, так и их различные комбинации. Способы подключения источника сигнала к нагрузке зависят от свойства источника сигнала и нагрузки. На рис.7.4 приведены четыре различных способа подключения сигнала к нагрузке. Штриховыми линиями на схемах показаны элементы неидеального ключа, соответствующие схемам замещения, приведенным на рис.7.2.
Если источник сигнала имеет характеристики, близкие к характеристикам идеального источника напряжения (т. е. имеет малое внутреннее сопротивление ri << Rн), то для его коммутации целесообразно использовать последовательный (рис.7.4,а) или последовательно-параллельный ключ (рис.7.4,б). Если же источник сигнала имеет характеристики, близкие к характеристикам идеального источника тока (т. е. имеет малую внутреннюю проводимость gi << Rн -1), то для его коммутации лучше использовать параллельный ключ (рис.7.4,в) или параллельно-последовательный ключ (рис.7.4,г).
Рис.7.4. Схемы подключения источ-
ника сигнала к нагрузке при помощи
последовательного ключа (а), последо-
вательно-параллельного ключа (б), па-
раллельного ключа (в) и параллельно-
последовательного ключа (г)
Погрешности, вносимые конечными значениями сопротивлений ключа в замкнутом и разомкнутом состоянии для схемы, изображенной на рис.7.4,а, определяются формулами
и .
Аналогичным образом можно определить погрешности для других схем включения, приведенных на рис.7.4.
Диодные ключи применяются для точного и быстрого переключения напряжений и токов. Схемы различных диодных ключей приведены на рис.7.5. Двухдиодный ключ, приведенный на рис.7.5,а, при отсутствии управляющего напряжения заперт. При подаче на аноды диодов положительного управляющего напряжения диоды отпираются и ключ замыкается. Напряжение смещения такого диодного ключа определяется разностью прямых напряжений на диодах D1 и D2. При подобранных диодах напряжение смещения лежит в пределах 1...5мВ. Время коммутации определяется быстродействием диодов. Для диодных ключей обычно используются диоды Шотки или кремниевые эпитаксиальные диоды с тонкой базой. В этих диодах слабо выражены эффекты накопления носителей, и их инерционность в основном определяется перезарядом барьерной емкости. Дифференциальное сопротивление открытого диодного ключа равно сумме дифференциальных сопротивлений диодов и может лежать в пределах от 1 до 50 Ом.
Рис.7.5. Схемы диодных ключей на двух диодах (а), мостовая
(б) и на шести диодах (в)
Основным недостатком такого ключа является прямое прохождение тока управляющего сигнала через нагрузку Rн и источник сигнала ес. Для снижения напряжения помехи эту схему целесообразно использовать при малых значениях сопротивления источника сигнала и сопротивления нагрузки. Кроме того, желательно увеличивать сопротивление Rуп для снижения тока в цепи управления. Однако следует учесть, что снижение тока управления приведет к увеличению дифференциального сопротивления диодов.
Для снижения помех из цепи управления можно использовать мостовую схему, приведенную на рис.7.5,б. В этой схеме цепь управления развязана от цепи передачи сигнала. Если напряжение управления равно нулю или имеет полярность, запирающую диодный мост, то ключ разомкнут. При положительной полярности источника управляющего сигнала ключ замыкается, а ток управления проходит только через диоды и сопротивление Rуп. Учитывая, что для цепи передачи сигнала диодные пары D1, D2 и D3, D4 включены встречно, напряжение смещения также будет равно разности прямых падений напряжений на диодах, т. е. примерно равно напряжению смещения двухдиодного ключа.
Недостатком схемы, приведенной на рис.7.5,б, является отсутствие общей точки у источника сигнала и источника управления. Схема, изображенная на рис.7.5,в, лишена этого недостатка. В этой схеме используются два симметричных источника сигналов управления еуп1 и еуп2. Сигналы этих источников подводятся к диодному мосту через разделительные диоды D5, D6. Для поддержания диодного моста в запертом состоянии при отсутствии сигналов управления на него подается через резисторы Rуп1 и Rуп2 запирающее напряжение от источников постоянного напряжения ±Е. В этой схеме, так же как и в предыдущей, обеспечивается развязка источника управления от цепи источника сигнала.
Схемы диодных ключей использованы в микросхемах диодных коммутаторов серии 265ПП1 и 265ПП2. Эти коммутаторы отличаются только полярностью управляющих напряжений. Схема коммутатора 265ПП2 приведена на рис.7.6. Она представляет собой семиканальный переключатель с общим сигналом управления.
Рис.7.6. Схема диодного коммутатора 265ПП2
В настоящее время диодные коммутаторы вытесняются более совершенными транзисторными ключами.
Ключи на биполярных транзисторах более совершенны, чем диодные ключи и значительно чаще используются в электронных схемах. Простейший ключ на одном биполярном транзисторе приведен на рис.7.7. Он со-
Рис.7.7. Ключ на биполярном транзисторе
стоит из ключевого транзистора Т1 и схемы управления на транзисторе Т2. По структуре транзисторный ключ похож на двухдиодный ключ, изображенный на рис.7.5,а. При отсутствии тока базы Т1 закрыт, и ключ разомкнут, а при протекании через базу тока управления iб>iб.нас ключ замкнут. В этом случае коллекторный и эмиттерный переходы открыты и действуют так же, как открытые диоды в схеме рис.7.5,а.
Некоторое отличие заключается в площадях этих переходов, а, следовательно, и в падениях напряжений на них. Разность напряжений на переходах создает напряжение смещения. Кроме того, следует учитывать различие токов в переходах, что также влияет на напряжение смещения. Это напряжение смещения для ключей на одиночных транзисторах составляет 0,1...0,2В, а сопротивление замкнутого ключа колеблется от 10 до 100 Ом. Время переключения зависит от степени насыщения и для высокочастотных транзисторов с тонкой базой обычно не превышает 0,1 мкс.
Ключи на полевых транзисторах с управляющими p-n -переходами и с изолированным затвором в настоящее время получили преимущественное распространение в различных интегральных микросхемах. Это связано с такими достоинствами этих ключей, как малые токи утечки, низкое потребление по цепи управления, отсутствие напряжения смещения, технологичность производства.
В аналоговых ключах используются полевые транзисторы с каналами р- и n -типа. Однако, поскольку подвижность электронов больше подвижности дырок, то сопротивление канала во включенном состоянии у транзисторов с n -каналом ниже. На быстродействие ключей существенным образом влияют переходные процессы в транзисторах. В этом отношении преимущественное применение находят полевые транзисторы с изолированным затвором, паразитные емкости у которых меньше. Наибольшее распространение получили ключи на комплементарной (согласованной) паре полевых транзисторов, один из которых имеет канал p -типа, а другой — канал n -типа.
Особенностью ключей на полевых транзисторах с изолированным затвором является сильная зависимость сопротивления открытого канала от коммутируемого сигнала, что приводит к модуляции проводимости канала входным сигналом и возникновению дополнительных нелинейных искажений. Для снижения искажений, вызванных модуляцией проводимости канала, в таких ключах ограничивают уровень входных сигналов и используют сравнительно большое сопротивление нагрузки ключа. Аналогичный эффект имеется и в полевых транзисторах с управляющим p-n -переходом, однако для его снижения на затвор подают сигнал управления, зависящий от входного сигнала.
На рис.7.8,априведена схема ключа на полевом транзисторе Т1 с управляющим p-n -переходом и каналом p -типа. Схема управления ключём выполнена на транзисторе Т2, а ее питание производится от источника напряжения Е. Диод D необходим для того, чтобы напря-
Рис.7.8. Схема ключа на полевом транзисторе с управляющим p-n -переходом (а) и с изолирован-
ным затвором (б)
жение затвор—исток оставалось равным нулю при любых значениях входных сигналов. Для исключения модуляции проводимости канала входным сигналом затвор через сопротивление R3 связан с напряжением источника сигнала ес. Устройство управления работает следующим образом. Если напряжение управления равно нулю, то транзистор T2 заперт и напряжение +Е через сопротивление R2 и диод D подводится к затвору транзистора T1, запирая его. В результате этого ключ будет замкнут. Если напряжение управления включает транзистор T2, то анод диода D через насыщенный транзистор Т2 соединяется с общей шиной, в результате чего напряжение на затворе T1 снижается почти до нуля и транзистор T1 отпирается, что эквивалентно замыканию ключа.
Ключи на полевых транзисторах с управляющим p-n -переходом входят в состав микросхем ряда серий: 284, КР504 и др. Так, например, микросхема 284КН1 содержит три ключа на полевых транзисторах с управляющим p-n -переходом и каналом n -типа. Каждый ключ имеет следующие параметры: сопротивление замкнутого ключа 250 Ом, ток утечки 10 нА, максимальная частота коммутации 1 МГц.
Ключи на полевых транзисторах с изолированным затвором и индуцированным каналом р- и n -типа получили самое широкое распространение при создании коммутаторов. Основной особенностью этих ключей является то, что в исходном состоянии при нулевом напряжении на затворе они заперты. Обогащение канала носителями зарядов происходит только при подаче на затвор напряжения, превышающего пороговое напряжение. Токи утечки ПТИЗ определяются токами, которые протекают в закрытом транзисторе от истока и стока к подложке и имеют значение 1... 10нА при нормальной температуре. С повышением температуры они ведут себя как обратные токи p-n -переходов, т. е. экспоненциально увеличиваются. Сопротивление между затвором и другими электродами в ПТИЗ достигает очень большого значения: 1011... 1013Ом, что при малой толщине диэлектрика под затвором (около 1 мкм) приводит к необходимости защиты от статического электричества. Одной из таких мер является установка защитных стабилитронов или диодов между затвором и каналом, однако это приводит к увеличению тока утечки затвора, особенно с повышением температуры.
Схема простейшего ключа па полевом транзисторе с изолированным затвором и каналом p -типа приведена на рис.7.8,б. Для отпирания ключевого транзистора Т на его затвор необходимо подать напряжение отрицательной полярности, превышающее пороговое напряжение Uпор. Для запирания ключевого транзистора Т напряжение на затворе должно быть положительным (или равным нулю). Устройство управления для схемы, изображенной на рис.7.9,б, выполнено на компараторе напряжения К (или операционном усилителе). Если напряжение управления равно нулю, то на выходе компаратора будет положительное напряжение, близкое по значению к напряжению питания Е. При положительном управляющем напряжении компаратор переключается, и на его выходе появляется отрицательное напряжение, также близкое к напряжению питания Е.
Ключи на ПТИЗ с каналом p -типа выпускаются как в виде отдельных элементов, так и в составе сложных коммутаторов. Так, например, микросхемы серии 168 содержат сдвоенные ключи без схем управления типа 168КТ2. Такие ключи имеют пороговое напряжение от 3 до 6В, прямое сопротивление не более 100 Ом, время включения и выключения около 0,3...0,5мкс. Отсутствие в этой микросхеме устройств управления усложняет ее применение.
В серии К547 имеется четырехканальный переключатель К547КП1, аналогичный микросхеме 168КТ2. По основным параметрам этот переключатель близок к микросхеме К168КТ2.
Кроме отдельных транзисторов в качестве ключей широкое распространение получили схемы, содержащие параллельное соединение двух ПТИЗ с разным типом проводимости канала (комплементарные КМОП-транзисторы). В таких ключах устранены многие недостатки ключей на одиночных транзисторах: устранена модуляция сопротивления канала входным сигналом, снижены помехи из цепи управления, снижено сопротивление ключа в открытом состоянии и уменьшен ток утечки. Схема ключа на комплементарных транзисторах приведена на рис.7.9,а. Для одновременного переключения транзисторов из включенного состояния в выключенное сигнал управления подается на затвор одного транзистора непосредственно, а на затвор другого — через инвертор.
Рис.7.9. Схема ключа на КМОП-транзисторах (а) и зависимость его сопротивления в открытом состоянии от входного напряжения (б)