Устройства чтения Fm дисков




Разработчики заявляют, что приводы, предназначенные для чтения этих дисков, будут легко понимать форматы как CD, так и DVD дисков. В этом есть необходимость, так как рынок переполнен CD и (в меньшей степени) DVD дисками. По строению приводы для FM дисков аналогичны приводам для CD/DVD по многим компонентам, например по таким как: наличие лазера, оптика, сервопривод, система трекинга и фокусировки, различные контроллеры. Добавляются лишь системы, способные улавливать и различать флуоресцентное свечение от лазерного, а также сервис по выборке информационного слоя.

Запись на FDM-ROM

На момент написания статьи пока еще не был представлен прототип записывающего устройства на FM-диски, но компания C3D заявляет, что оно в стадии разработки. При записи на FMD-ROM используется технология WORM (Write Once Read Many - один раз записал, много раз прочитал). Серия перезаписываемых дисков так и будет называться: FMD WORM. Технология производства данных дисков остается та же, что и при производстве FMD ROM, за исключением того, что будет использоваться иной флуоресцентный материал, способный обратимо менять свое состояние под действием лазера при записи. При этом появляются некоторые правила, согласно которым запись на диск следует 2-м критериям:

· Необходимо иметь достаточную мощность записывающего лазера, который наделял бы элемент диска флуоресцентным свойством;

· При записи использовать пороговую мощность лазера, при которой происходит изменение флоуресцентных свойств материала, а при чтении использовать меньшую мощность лазера, дабы не испортить записанные на диске данные.

Также очень важно выбрать метод записи на диск. Разработчики FMD технологии предлагают 2 принципа записи.

Первый принцип (термический) предполагает использование материала, изначально обладающего флуоресцентным свойством (логическая единица). При записи же, участки, на которые производится термическое воздействие посредством лазера, теряют это свойство(логический ноль).

Второй принцип (химический) предполагает использование материала не обладающим флуоресцентным свойством. При воздействии лазера происходит фотохимическая реакция, в результате которой материал наделяется флуоресцентным свойством. Для возбуждения данной реакции достаточно маломощного лазера, либо обычного светодиода (или светодиодной матрицы). При использовании светодиодной матрицы возможна одновременная запись целого массива информации, что ускоряет процесс записи.

Записывающие устройства не имеют принципиальных отличий от считывающих устройств. Единственное отличие будет в использовании немного другой формы лазера, позволяющей производить как чтение, так и запись. Необходимо отметить еще одну интересную особенность в плане того, что есть возможность совмещение WORM и ROM на одном носителе! Например, представьте себе 20 слойный диск, у которого 10 слоев уже содержат информацию (записанную при изготовлении), а остальные 10 оставлены под нужды пользователя.

К сожалению, информация, поступающая от официальных источников очень скудна, и нам остается только дождаться первых экземпляров FMD WORM и записывающих устройств.

Компания C-3d также планирует выпуск перезаписываемых FM дисков (в конце 2001 года). Принцип записи остается практически таким же, как и у СD-RW технологии за исключением того, что здесь нет необходимости управлять отражающей способностью слоя - достаточно будет переводить флуоресцентный материал из одного состояние (отсутствие флуоресценции) в другое (наличие флуоресценции). Например, весь слой FM диска будет покрыт флуоресцентным материалом, изначально не обладающим флуоресценцией (логический ноль), и при записи логической единицы в нужном месте посредством маломощного лазера возбуждается фотохимическая реакция, вследствие чего этот участок наделяется флуоресценцией. Стирание будет производится более мощным лазером, под действием которого элементы теряют флуоресценцию. Достоинством данной технологии можно назвать то, что флуоресцентный материал намного устойчивее к фазовым преобразованиям, нежели используемый в CD-RW дисках, поэтому возможно произвести намного больше циклов перезаписи.

Параллельное чтение

Как уже и упоминалось выше, в данной технологии существует возможность параллельного чтения, то есть последовательность бит записывается не вдоль дорожки, а вглубь по слоям. Таким образом, появляются три способа чтения данных: последовательный, последовательно-параллельный и параллельный.

Немного о том, как происходит параллельное чтение.Процесс чтения производится с помощью фоточувствительного элемента, который представляет собой массив CDD камер. Данный прибор способен считывать маломощное свечение с частотой в несколько десятков МГц. При этом скорость считывания достигает 1 Гбита/с. Надо отметить, что механическая скорость работы привода при этомв 450 раз меньше, чем у DVD.

DVD и FMD-ROM

По каким же параметрам FMD ROM будет превосходить DVD?
Первый параметр - соотношение размер/емкость. Тут "fluorescent multilayer disk" вне конкуренции. Разработчики заявляют, что уже сейчас первые прототипы способны вмещать при размере диска 12 см в диаметре, то есть на стандартном 5 дюймовом носителе до 140Гб. Это при десяти слоях. А в ближайших планах компании C3D есть желание, как минимум удесятерить число слоев. При этом становится вполне реальной возможность создания сменных носителей информации емкостью в десятки терабайт. Та емкость, которую на сегодняшний день можно получить лишь при использовании громадных дисковых массивов, занимающих подчас целые шкафы и даже комнаты, будет обеспечиваться компактным диском, который с легкостью умещается в кармане!
Насчет скорости доступа еще очень мало данных. Разработчики обещают, что этот параметр будет намного выше, нежели у DVD. Хотелось бы верить, ведь иначе, с существующими скоростями, при работе с терабайтными массивами информации даже простые операции, например, перечитка диска, может затянуться на несколько часов. Новые гигантские объемы требуют и соответствующих скоростей доступа.
Что же касается соотношения емкость/стоимость носителя, то и тут FMD ROM не имеет себе равных. Ведь он представляет собой практически кусок пластмассы, вернее полимерную матрицу с фотохромным веществом, но по стоимости, это просто пластиковый диск. И ни каких затрат по созданию дорогостоящих полупрозрачных слоев, как в DVD. Собственно и никаких слоев в привычном смысле этого слова нет.


D принтеры

Лазерная печать

А теперь перейдем к настоящим объемным принтерам. В них используются несколько различных технологий. Исторически, первой было разработана так называемая стереолитография (StereoLithography или SLA). Принцип был изобретен и запатентован Чарльзом Халлом (Charles Hull) еще в 1986 году. Затем Халл основал компанию 3D Systems, которая занималась выпуском соответствующего оборудования. Позже к ней присоединились немецкая EOS GmbH, японские Sony-DMEC и Mitsui Engineering, а также несколько других. Суть стереолитографии в следующем - в рабочей зоне принтера находится жидкий фотополимер. При освещении ультрафиолетовым светом фотополимер затвердевает и превращается в достаточно прочный пластик (фотополимеры активно используются дантистами для пломбирования, так что, думаю, многие из читателей с ними знакомы). Для засветки полимера используется либо ультрафиолетовый лазер, либо обычная ультрафиолетовая лампа (о чем чуть позже). Луч лазера фактически попиксельно сканирует рабочую плоскость и формирует отдельные твердые "пиксели", пока не нарисует на пластике сечение модели. Затем уровень фотополимера повышается (точнее, опускается рабочий стол вместе со сформированной частью модели), и поверх него рисуется следующий слой, пока модель не будет полностью готова. Стереолитография позволяет получить точность "отпечатка" порядка десятых долей миллиметра, хорошо воспроизводит мелкие детали и обеспечивает достаточно ровную поверхность объекта. Эта технология лучше всего обкатана и наиболее широко распространена. Впрочем, не лишена она и недостатков - установки, равно как и расходные материалы, достаточно дороги (цена такого принтера составляет порядка сотен тысяч долларов). К тому же обрабатываемый материал ограничевается только фотополимерами.

Более скоростной вариант этой технологии первоначально был разработан компанией Cubital Inc. (ныне, судя по всему, покойной). Назывался он Solid Ground Curing или, сокращенно, SGC. В качестве рабочего материала в ней тоже использовался фотополимер, но засветка производилась ультрафиолетовой лампой сразу для всего рабочего слоя. Засветка велась через фотошаблон, который для каждого слоя печатался на стекле по технологии, напоминающей лазерную печать. Обработка всего слоя одновременно вместо попиксельного сканирования лазерным лучом как раз и позволяла достичь достаточно высокой скорости построения объекта. Сейчас систему на похожем принципе предлагает, например, немецкая компания Еnvisiontec. Устройство называется Prefactory (весьма говорящее название) и представляет собой систему быстрого прототипирования для конечного пользователя. Машинка занимает всего 0.3 квадратного метра площади, так что ее можно установить даже в небольшом офисе. Засветка производится при помощи технологии DLP (Digital Light Processing), аналогичной используемым в компьютерных проекционных системах. Разрешение (для одного рабочего слоя) составляет 1280x1024 пикселя при размере пикселя 150 или 90 микрон. Толщина слоев варьируется от 150 до 50 микрон. На Prefactory можно делать прототипы размером около 190x152x230 мм, а скорость печати составляет до 15 мм в час (в высоту). Управляется принтер встроенным компьютером под управлением Linux, а связь с внешним миром идет по Ehternet через локальную сеть. Фактически, посылать задания на Prefactory можно, как на обычный сетевой принтер.

Лазерное спекание

Альтернативный метод трехмерной печати называется лазерным спеканием (Selective Laser Sintering - SLS).Тут, как легко догадаться, тоже используется лазер, но в качестве рабочего материала выступает уже не фотополимер, а порошок какого-нибудь относительно легкоплавкого пластика. Пластик в рабочем объеме SLS-машины нагревается почти до температуры плавления, а чтобы он не загорелся и не стал окисляться, в рабочую зону подается азот. Затем мощный лазер опять же рисует по пластиковому порошку сечение детали, пластик нагревается выше температуры плавления и спекается. Сверху насыпается следующий слой и процедура повторяется. В конце работы лишний порошок просто стряхивается с готовой модели. Этот процесс был разработан в конце 80-х годов в Техасском университете в Остине и запатентован в 1989 году выпускником университета Карлом Декардом (Carl Deckard). Затем процесс был коммерциализирован фирмой DTM Corp. Лазерное спекание тоже обеспечивает достаточно высокое качество деталей, хотя поверхность у них получается пористой. Зато полученные методом SLS модели - самые прочные и эту технологию, в принципе, можно использовать для малосерийного производства. Правда, установка SLS достаточно сложная и дорога, а скорость производства составляет всего несколько сантиметров (высоты) в час (плюс несколько часов на нагревание и остывание установки).

Кроме неплохой точности изготовления и высокой прочности полученных "распечаток", SLS обладает еще несколькими важными достоинствами. Во-первых, лазерное спекание позволяет изготовлять модели с подвижными частями - например, с работающими петлевыми соединениями, нажимающимися кнопками и так далее. Во-вторых, для SLS-процесса разработаны специальные материалы, позволяющие напрямую изготавливать металлические детали. В качестве порошка здесь используются микрочастицы стали, покрытые сверху слоем связующего пластика. Спекание пластика происходит как обычно, а затем "отпечатанная" деталь обжигается в печи. При этом пластик выгорает, а освободившиеся поры заполняются бронзой. В результате, получается объект, состоящий на 60% из стали и на остальные 40% и бронзы. По своим механическим характеристикам он превосходит алюминий и приближается к классической нержавеющей стали. Фактически, SLS уже сейчас позволяет производить полноценные металлические предметы, причем произвольной формы. Кроме того, имеется аналогичный материал с керамической или стеклянной сердцевиной - из него можно делать модели, устойчивые к высоким температурам и агрессивным химическим веществам. Если бы только сам процесс не был так дорог…

Ламинирование

Еще одна технология объемной печати с использованием лазера - это ламинирование. Разработана она была компанией Helysis и проходила под торговой маркой LOM (Laminated Object Manufacturing). Сама Helysis в 2000 прекратила существование, а на основе ее технологии сейчас разрабатывают свое оборудование несколько других производителей. Суть технологии такова - в машину по очереди заряжаются тонкие листы рабочего материала, из которого затем лазером вырезаются слои будущей модели. После резки слои склеиваются друг с другом. В качестве материала первоначально использовалась специальная бумага со слоем клеящего вещества. Однако таким образом можна также нарезать тонкий пластик, керамику и даже металлическую фольгу.

Струйная печать

Выше были описаны, так сказать, системы лазерной трехмерной печати. Впрочем, струйные принтеры не отстают от лазерных и в этой области. Простейший из процессов "струйной" объемной печати - это так называемый Fused Deposition Modeling (FDM). Идея FDM очень проста - раздаточная головка выдавливает на охлаждаемую платформу-основу капли разогретого термопластика (в качестве материала может использоваться практически любой промышленный термопластик). Капли быстро застывают и слипаются друг с другом, формируя слои будущего объекта (печать здесь тоже ведется по слоям). Техпроцесс FDM позволяет с достаточно высокой точностью (минимальная толщина слоя 0.12 мм) изготовлять полностью готовые к использованию детали довольно большого размера (до 600 x 600 x 500 мм). Основы этой технологии были разработаны еще 1988 Скоттом Крампом (Scott Crump). Основным производителем оборудования для FDM является компания Stratasys.

Кстати, NASA рассматривает технологию FDM в качестве кандидата "космическую фабрику". Ведь в космическую экспедицию нельзя взять неограниченное количество запчастей ко всему оборудованию. Да и разместить полноценный механический цех на космическом корабле вряд ли удастся. А вот загрузить пару сотен килограмм исходного пластика и компактную машину, которая сможет сделать из этого пластика любую деталь - запросто.

Другая технология, явно восходящая к струйной печати - это разработка компании Objet Geometries под названием Polyjet. Здесь струйная головка используется для печати фотополимерным пластиком. Модель, как обычно, печатается слой за слоем, причем разрешение в слое составляет 600 x 300 dpi, а толщина слоя может быть доведена всего до 16 микрон. Каждый отпечатанный слой полимеризируется в твердый пластик под действием ультрафиолетовой лампы. В принципе, все это довольно похоже на SLA, но намного быстрее, точнее, проще и компактнее. При этом цена на принтеры Objet находится на уровне 60K$ -- в несколько раз меньше, чем у установок SLA. Аналогичную систему под названием InVison производит и компания 3D Systems, так что отец-основатель стереолитографии тоже не стоит на месте. Ценник на эту машину установлен около 40K$ -- системы быстрого прототипирования в последние годы явно дешевеют.

И еще одна технология "струйной печати", но с использованием порошковых материалов. Разработана она была в знаменитом Массачусетском Технологическом Институте, а первым и основным производителем оборудования стала компания Z Corporation. Её 3D принтеры относительно недороги (цены от 10 до 30K$) и работают существенно быстрее вышеописанных устройств. Суть технологии такова - специальная струйная головка (кстати, адаптированная из струйных принтеров Hewlett-Packard) набрызгивает на порошковый материал клеящее вещество. В качестве порошка используется обычный гипс или крахмал. В "забрызганных" местах порошок склеивается и формирует модель. Печать, как и в предыдущих случаях, идет послойно, а лишний порошок в конце стряхивается. Однако есть и существенная разница - этот принтер может использовать клеящую жидкость с добавление пигментных красителей - а значит, печатать цветные модели. В цветном принтере от Z Corporation установлены 4 струйные головки с чернилами-клеем основных цветов, так что полученная модель может воспроизводить не только форму, но и окраску (то есть, текстуру) своего виртуального прототипа. Правда, гипсовые модели получаются не очень то прочными, но зато их сразу можно использовать в качестве форм для литья. А что касается детализации "отпечатка", то достаточно посмотреть на приведенные фотографии, чтобы ее оценить.

Кстати, интересный вариант вышеописанной порошковой струйной печати разрабатывает компания ProMetal. Ее фирменный производственный процесс под названием Direct Metal Process работает абсолютно аналогично. Только вместо гипсового порошка применятся порошок металлический. Далее сформованное изделие обжигается в печи, так что порошок либо сплавляется сам, либо связывается более легкоплавким металлом (как и при лазерном спекании металлических порошков). Вот и еще один метод непосредственного производства при помощи трехмерной печати.

Вообще же, перспективы перед 3D печатью открываются самые радужные - эта технология уже позволяет экономить массу времени и сил дизайнерам и инженерам. А что будет, когда она станет доступна на бытовом уровне. Или, хотя бы, в виде недорогой услуги. Представьте себе, что можете сделать любой предмет, который сможете придумать и нарисовать на компьютере… Достаточно нарисовать модель, определить материал и отправить заказ по интернету. Это называется "дистанционное производство по требованию" (Distance Manufacturing on Demand). А вообще такая технология просто обязана рано или поздно стать массовой - и тогда у каждого на столе будет свой персональный механический заводик, заменяющий в мелочах обычное производство.

А между тем, дальнейшие разработки в этой области идут полным ходом, так что постоянно можно ожидать чего-нибудь нового и неожиданного. Вот, например, группа ученых из Калифорнийского университета в Беркли разрабатывает технологию трехмерной печати, которая позволила бы одновременно создавать и форму, и содержание. Под содержанием здесь подразумевается ни много, ни мало - электронная начинка. Скажем, принтер печатает корпус мобильного телефона из пластика и одновременно печатает внутри всю электронику. В принципе, уже существуют способы печати пластиковых полупроводниковых устройств и соединяющих их проводов. Осталось только скомбинировать их с существующими технологиями 3D-принтеров и готов революционный прорыв в современном производстве. Нет, конечно, это непростая задача, но решить ее вполне можно.

Или, вот, например, разработки Университета Миссури, позволяющие при помощи струйника выводить на печать своеобразные заготовки биологических органов. В качестве чернил при этом используются сгустки клеток заданного типа. Вместо "бумаги" выступает специальный био-гель, который фиксирует положение клеточных сгустков в пространстве. Печать производится в несколько слоев, так что в результате получается объемная конструкция из клеток, которая, в принципе, может имитировать любой орган (после вырастания клеток гель растворяется, так что возможно получение полых структур). Конечно, печать полноценного органа для пересадки пока представляется слишком сложной задачей, но работа идет.

 


Заключение

Благодаря развитию технических средств информация стала более доступной,легко предоставляемой, более простой в обработке и хранении. Развитие FM дисков позволит людям передавать, хранить, создавать и распространять все большее количество информации, а появление 3D-принтеров позволит предоставлять информацию более избычно, поскольку появится более наглядное точное представление информации.

Техника 21 века развивается стремительными быстрыми темпами что, показывает необходимость обладать теоретическими знаниями в этой области. В соответствии с тенденцией быстрого и всестороннего использования достижений научно-технического прогресса в области компьютерной техники и бурно развивающихся процессов информатизации стоит изучить некоторые достижения, их назначение, цели и применение, поськольку, вероятно, это техника уже близжайшего будущего.


Литература:

1. https://www.3dnews.ru/storage/fmd-rom/

2. https://intercomp.net.ru/storage/3ddisc.htm

3.https://mail.rambler.ru/mail/mail.cgi?mode=redirect;url=https://www.3dnews.ru%2Fperipheral%2F3d-print%2Fprint;href=1

4.https://mail.rambler.ru/mail/mail.cgi?mode=redirect;url=https://www.supertalent.ru%2Fhome%2Fpress%2FSuper%2520Talent%2520Introduces%2520IDE%2520Flash%2520Disk%2520Modules%2520RU.doc;href=1

5.https://translate.google.com/translate?hl=ru&sl=en&u=https://www.thocp.net/hardware/fmd_rom.htm&sa=X&oi=translate&resnum=3&ct=result&prev=/search%3Fq%3Dfmd%2Brom%26complete%3D1%26hl%3Dru%26lr%3D

6. https://www.webopedia.com/TERM/F/FMD_ROM.html

7. https://www.whatis.ru/hard/mem2.shtml

8. https://www.itc.ua/node/22983

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: