Алгоритм и примеры решения методом Гаусса системы линейных уравнений с квадратной матрицей системы




Рассмотрим решение систем линейных уравнений, в которых число неизвестных равно числу уравнений. Матрица такой системы - квадратная, то есть в ней число строк равно числу столбцов.

Решить модифицированным методом Гаусса систему линейных уравнений

Решая системы линейных уравнений школьными способами, мы почленно умножали одно из уравнений на некоторое число, так, чтобы коэффициенты при первой переменной в двух уравнениях были противоположными числами. При сложении уравнений происходит исключение этой переменной. Аналогично действует и метод Гаусса.

Для упрощения внешнего вида решения составим расширенную матрицу системы (можно добавить дополнительный столбец в каждую строку, а можно выполнять расчеты для чисел, стоящих справа от равно, записав эти данные в отдельный массив, и работать с ним):

В этой матрице слева до вертикальной черты расположены коэффициенты при неизвестных, а справа после вертикальной черты - свободные члены.

Для удобства деления коэффициентов при переменных (чтобы получить деление на единицу) переставим местами первую и вторую строки матрицы системы. Получить единицу можно, разделив все числа строки и свободное число на на первый элемент (a11). Получим систему, эквивалентную данной, так как в системе линейных уравнений можно переставлять местами уравнения:

С помощью нового первого уравнения исключим переменную x из второго и всех последующих уравнений. Для этого ко второй строке матрицы прибавим первую строку, умноженную на (в нашем случае на ), к третьей строке – первую строку, умноженную на (в нашем случае на ).

Это возможно, так как

Если бы в нашей системе уравнений было больше трёх, то следовало бы прибавлять и ко всем последующим уравнениям первую строку, умноженную на отношение соответствующих коэффициентов, взятых со знаком минус.

В результате получим матрицу эквивалентную данной системе новой системы уравнений, в которой все уравнения, начиная со второго не содержат переменнную x:

Для упрощения второй строки полученной системы умножим её на и получим вновь матрицу системы уравнений, эквивалентной данной системе:

Теперь, сохраняя первое уравнение полученной системы без изменений, с помощью второго уравнения исключаем переменную y из всех последующих уравнений. Для этого к третьей строке матрицы системы прибавим вторую строку, умноженную на (в нашем случае на ).

Если бы в нашей системе уравнений было больше трёх, то следовало бы прибавлять и ко всем последующим уравнениям вторую строку, умноженную на отношение соответствующих коэффициентов, взятых со знаком минус.

В результате вновь получим матрицу системы, эквивалентной данной системе линейных уравнений:

Мы получили эквивалентную данной трапециевидную систему линейных уравнений:

Если число уравнений и переменных больше, то процесс последовательного исключения переменных продолжается до тех пор, пока матрица системы не станет трапециевидной.

Эта часть работы эквивалентна нахождению определителя системы. И у вас уже должно быть решение.

К этому решению можно применить модифицированный метод Гаусса, который состоит в том, что если диагональный элемент равен 0, то в этой строке ищем первое число, отличное от нуля и меняем столбцы чисел местами с индексами: индекс диагонального элемента и индекс найденного ненулевого данного. Далее аналогично просто методу Гаусса.

Решение системы уравнений найдём "с конца" - обратный ход. Для этого из последнего уравнения определим z:

.
Подставив это значение в предшествующее уравнение, найдём y:

Из первого уравнения найдём x:

Ответ: решение данной системы уравнений - .

Задание: оформите подпрограмму решения системы уравнений методом Гаусса.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-05-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: