Известны различные классификации химических веществ по характеру действия на организм человека, предложенные разными авторами. Согласно ГОСТ 12.0.003-74 ССБТ " Опасные и вредные производственные факторы. Классификация" все химические факторы среды обитания по характеру действия на организм человека подразделяются на следующие группы:
- токсические;
- раздражающие;
- сенсибилизирующие;
- канцерогенные;
- мутагенные;
- влияющие на репродуктивную функцию.
Вещества первой группы можно подразделить на следующие типы:
- яды нервной системы (нейротропные);
- яды внутренних органов;
- яды крови.
Для нейротропных ядов характерно наркотическое действие, поражение нервных клеток. Наиболее сильному воздействию подвержен мозг. Начальные признаки отравления этими ядами - сонливость, быстрая утомляемость, эмоциональная неустойчивость, снижение работоспособности; в дальнейшем появляются головные боли, нарушения интеллекта, психики.
К нейротропным ядам относятся органические растворители, фосфорорганические соединения, тетраэтилсвинец, сероуглерод, бромистый этил, мышьяк.
При воздействии на организм ядов второго типа поражаются желудок, печень, почки. Отравления цинком, хромом, окислами азота, тринитротолуолом, органическими растворителями вызывают гастриты. Есть значительная группа ядов, вызывающих заболевания печени (гепатотропные яды). К их числу относятся хлорированные и бромированные углеводороды, хлорированные нафталины, нитропроизводные бензола, эфиры азотной кислоты, стирол и его производные, соединения фосфора и селена, мышьяк, гидразин и его производные.
Функции почек нарушаются при отравлениях такими ядами, как этилен- гликоль и его эфиры, свинец, сулема, скипидар, хлорпроизводные углеводоро- дов.
|
Яды крови подразделяют на два типа:
-нарушающие процесс костномозгового кроветворения;
- разрушающие элементы крови.
Примерами ядов первого типа являются бензол и его гомологи, стирол, свинец.
Яды второго типа этой группы - оксид углерода, амидо- и нитро-соединения бензола, нитрит натрия, некоторые органические перекиси. Эти соединения блокируют гемоглобин крови, переводя его в карбоксигемоглобин (оксид углерода) или метгемоглобин (амидо- и нитросоединения бензола и др.), которые не способны к переносу кислорода из легких к тканям организма.
Раздражающим действием обладают многие химические вещества. Поражаются ими органы дыхания, легкие, кожные покровы, глаза. При отравлениях аммиаком, сернистым газом, хлором преобладает поражение верхних дыхательных путей, а окислы азота, фосген, диметилсульфат вызывают отек легких.
Особую группу составляют сенсибилизирующие вещества, приводящие к сенсибилизации организма, когда возрастает восприимчивость организма к повторному воздействию яда. Сенсибилизация лежит в основе большинства аллергических заболеваний. Характерными аллергенами являются ароматические амины, нитро- и нитрозосоединения, производные мышьяка, ртути, кобальта, никеля, хрома, бериллия, формальдегид, скипидар, органические окиси и перекиси.
Есть вещества, способные сенсибилизировать кожу к действию ультрафиолетовых лучей. Таким фотосенсибилизирующим действием обладает антрацен, каменноугольная смола, хлорированные нафталины.
|
Канцерогенными называют вещества, вызывающие образование злокачественных опухолей, причем от момента контакта организма с канцерогеном до развития заболевания проходит довольно длительный период, составляющий иногда десятки лет.
Большинство известных канцерогенных веществ принадлежит к полициклическим ароматическим углеводородам, ароматическим аминам, амино-азосоединениям. Выявлена канцерогенная активность также для нитрозоаминов, металлов, уретанов.
Наибольшее число канцерогенов обнаружено среди полициклических ароматических углеводородов, которые могут содержаться в сырой нефти, образуются при термической переработке каменного угля, древесины, сланцев, нефти и при неполном сгорании топлива. Сильнейшим канцерогеном этого класса является бензпирен.
Ароматические амины широко распространены в анилинокрасочной промышленности. Это нафтиламины, бензин, 4-диметиламиноазобензол, о-толуидин и др.
Среди нитрозоаминов высокой канцерогенной активностью обладает диметилнитрозоамин. Образуются нитрозоамины и при сгорании табака.
К числу металлов, обладающих канцерогенным действием, относятся хром, никель, бериллий.
Мутагенами называют вещества, нарушающие генетический код человека. Генетически опасными являются этиленимин, гексаметилентетрамин, гидрохинон, оксиды этилена, соединения свинца, ртути.
Ядами тератогенного (или эмбриотропного) действия являются вещества, влияющие на репродуктивную функцию организма. Под воздействием таких соединений возникают структурные, функциональные, биохимические изменения плода, приводящие к рождению уродов и с пороками развития. Тератогенное действие характерно для бензола и его гомологов, демитилформамида, демитилдиоксана, фенола, бензина, фталевого ангидрида.
|
2.1.5. Комбинированное действие промышленных ядов
Комбинированное действие ядов - одновременное или последовательное действие на организм нескольких ядов при одном и том же пути поступления.
В производственных условиях чаще всего происходит комбинированное действие веществ. Например, в производстве нитробензола работающие подвергаются одновременному действию паров бензола, нитробензола и окислов азота.
Согласно классификации, признанной ВОЗ (Всемирной организацией здравоохранения), различают следующие типы комбинированного действия ядов:
- аддитивный тип, когда суммарный эффект действия ядов равен сумме эффектов, возникающих при изолированном действии веществ;
- синергизм, когда действие одного яда усиливается в присутствии другого;
- антагонизм, когда действие одного яда ослабляется действием другого;
- независимое действие, когда совместное действие ядов не отличается от изолированного действия каждого из них.
Аддитивный эффект характерен для веществ, обладающих однонаправленным действием. Например, для углеводородов, вызывающих наркотический эффект, или для таких раздражающих газов, как окислы азота и сернистый газ, хлор и окислы азота.
Для гигиенической оценки воздушной среды при аддитивном типе комбинированного действия ядов предложено такое соотношение:
С1 /ПДК1 + С2 /ПДК2 +... + Сn /ПДКn < 1
где С1, С2, Сn - фактические концентрации веществ в воздухе рабочей зоны.
Синергизм наблюдается при комбинированном действии двуокиси азота и окиси углерода, бензола и окиси углерода. Токсичность двуокиси азота в присутствии окиси углерода возрастает в 3 раза, а токсичность СО в присутствии NO - в 1,5 раза. Вышеприведенное соотношение для данного случая приобретает вид:
1,5СС О / ПДКСО + 3СNO2 / ПДКNO2
Явление синергизма характерно и для совместного действия многих промышленных ядов и алкоголя.
Этиловый спирт усиливает действие таких веществ, как амино- и нитропроизводные углеводородов, хлорзамещенные углеводороды (особенно четыреххлористый углерод), эфиры азотистой и азотной кислот.
Классическим примером антагонизма при комбинированном действии является действие кислот и щелочей. Знание характера действия ядов на организм позволяет выбирать рациональные меры по оказанию первой помощи при отравлениях и рекомендовать способы лечения. Например, для лечения отравлений метанолом применяют этиловый спирт.
Сравнительно редко встречаются вещества, обладающие независимым действием. Например, бензол и раздражающие газы, хлорированные углеводoроды и фосфорорганические соединения.
Знание типов комбинированного действия веществ необходимо для организации контроля воздушной среды рабочих зон помещений и для проектиро - вания систем вентиляции.
2.1.6 Пути поступления ядов в организм
Яды могут проникать в организм тремя путями: ингаляционным, т. е. через органы дыхания, через кожу и желудочно-кишечный тракт.
Основным и наиболее опасным является ингаляционный путь, так как слизистые оболочки верхних дыхательный путей и легкие обладают высокой всасывающей способностью. Установлено, что поверхность легочных альвеол при их среднем растяжении составляет 90-100 м2, толщина же альвеолярных мембран колеблется в интервале 0,001-0,004 мм. Поэтому в легких создаются благоприятные условия для насыщения крови токсичными веществами.
Газы и пары, обладающие малой химической активностью и поэтому не изменяющиеся в организме, а также те газы и пары, превращение которых происходит медленнее, чем накопление в крови (так называемая группа нереагирующих газов и паров), поступают в кровь через легкие на основе закона диффузии, т.е. вследствие разности парциального давления газов и паров в альвеолярном воздухе и крови. Насыщение крови этими газами и парами определяется величиной коэффициента распределения К, который равен отношению концентрации в артериальной крови к концентрации в альвеолярном воздухе. Чем меньше коэффициент распределения, тем быстрее происходит насыщение крови парами. Например, пары бензина (К = 2,1) при больших концентрациях способны вызвать мгновенное острое или смертельное отравление, а пары ацетона (К =400) мгновенное отравление не вызывают.
При вдыхании реагирующих газов и паров (таких, которые в организме быстро вступают в реакцию) насыщения никогда не наступает. Сорбция этих газов и паров протекает с постоянной скоростью и количество сорбированного газа находится в прямой зависимости от объема дыхания. С увеличением объема легочного дыхания и скорости кровообращения сорбция происходит быстрее, поэтому в жаркое время года и при выполнении тяжелой физической работы чаще происходит отравление химическими веществами.
Через кожу могут проникать вещества, которые обладают одновременно хорошей растворимостью в жирах и воде. К ним относятся неэлектролиты (углеводороды жирного и ароматического рядов, их производные, металлоорганические соединения и др.); электролиты через кожу не проникают.
Поступления ядов через кожу зависит во многом от консистенции и летучести вещества.
Вещества, обладающие высокой летучестью, через кожу в организм не проникают. Наибольшую опасность в этом отношении представляют малолетучие вещества маслянистой консистенции (анилин, нитробензол и др.).
Через желудочно-кишечный тракт в организм могут поступать вещества с загрязненных рук. Например, свинец, тринитротолуол. Они плохо смываются водой и при курении или во время еды могут попасть в полость рта.
Всасывание ядов, поступающих через желудочно-кишечный тракт, происходит значительно медленнее, чем при поступлении ингаляционным путем, так как поверхность желудочно-кишечного тракта относительно невелика и, кроме этого, сказывается избирательный характер всасывания. Кислая среда желудочного сока может способствовать всасыванию некоторых ядов. Например, соединения свинца, плохо растворимые в воде, хорошо растворяются желудочным соком и поэтому легко всасываются в желудочно-кишечном тракте.
2.1.7. Распределение ядов в организме, превращение и выведение
Распределение ядов в организме определяется их природой. С точки зрения распределения ядов в организме рассматривают две группы веществ: электролиты и неэлектролиты.
Распределение неэлектролитов в организме на начальной фазе поступления зависит от условий кровообращения. В дальнейшем же определяющим фактором становится сорбционная емкость органов.
Способность электролитов проникать в клетку резко ограничена. Считают, что она зависит от заряда ее поверхностного слоя. Распределяются электролиты в тканях неравномерно. Например, свинец накапливается, главным образом, в костях, марганец откладывается в печени, ртуть - в почках и тонком кишечнике.
Вещества, поступающие в организм, подвергаются самым разнообразным превращениям. В результате таких превращений образуются продукты (метаболиты), как правило, менее токсичные, чем само вещество. Но есть исключения из этого правила. Так, метиловый спирт окисляется до формальдегида и муравьиной кислоты, а метилацетат - до метилового спирта и уксусной кислоты.
Превращения ядов в организме могут происходить путем различных реакций: окисления, восстановления, гидролиза, метилирования, аминирования и т.д. Но большинство веществ подвергаются реакциям окисления и восстановления. Бензол окисляется до фенолов, диоксибензола, пирокатехина, гидрохинона и даже до муконовой кислоты. Толуол окисляется в бензойную кислоту. Ряд спиртов жирного ряда (кроме метилового) окисляется до углекислоты и воды.
Ароматические амины подвергаются дезаминированию, анилин окисляется в парааминофенол, а нитросоединения восстанавливаются до аминофенолов.
Неорганические соединения также подвергаются различным превращениям. Например, нитриты окисляются до нитратов, сульфиды - до сульфатов, цианистые соединения превращаются в роданистые.
Выделение ядов из организма происходит различными путями: через легкие, кожу, почки, желудочно-кишечный тракт.
Через легкие удаляются летучие вещества, не изменяющиеся или медленно изменяющиеся в организме. Так, через легкие выделяются бензол, хлороформ, бензин, диэтиловый эфир.
Через почки выделяются хорошо растворимые в воде вещества и продукты их превращения.
Через желудочно-кишечный тракт выводятся нерастворимые или плохо растворимые вещества. Через кожу сальными железами удаляются вещества, растворимые в жирах. Эти же вещества выделяются также молочными железами вместе с молоком.
2.1.8. Оценка реальной опасности химических веществ
Под опасностью химического соединения понимают вероятность возникновения отравления или отклонения в состоянии здоровья при реальных условиях его производства или применения.
Согласно ГОСТ 12.1.007-76 "Вредные вещества. Классификация и общие требования безопасности" по опасности воздействия на организм все промышленные яды делятся на 4 класса:
чрезвычайно опасные - I класс;
высокоопасные - II класс;
умеренноопасные - III класс;
малоопасные - IV класс.
Класс опасности устанавливается в зависимости от значения показателей токсичности (табл. 1), при этом отнесение вещества к определенному классу опасности производится по тому показателю, значение которого соответствует наиболее высокому классу. Классы опасности промышленных ядов представлены в ГОСТ 12.1.005-88 "Общие санитарно-гигиенические требования к воздуху рабочей зоны".
Таблица 2.1.5
Классификация промышленных ядов по степени опасности
Показатель | Норма для класса опасности | |||
1-го | 2-го | 3-го | 4-го | |
Предельно допустимая концентра- ция вредных веществ в воздухе ра- бочей зоны, мг/м3 | Менее 0,1 | 0,1-1 | 1,1-10 | Более 10 |
Средняя смертельная доза при вве- дении в желудок, мг/кг | Менее 15 | 15-150 | 151-5000 | Более 5000 |
Средняя смертельная доза при нане- сении на кожу, мг/кг | Менее 100 | 100-500 | 501-2500 | Более 2500 |
Средняя смертельная концентрация в воздухе, мг/м3 | Менее 500 | 500-5000 | 5001-50000 | Более 50000 |
Коэффициент возможности ингаля- ционного отравления КВИО | Более 300 | 300-30 | 29-3 | Менее 3 |
При оценке реальной опасности химических веществ в производственных условиях следует учитывать наряду с показателями токсичности также физико-химические свойства (агрегатное состояние, сорбционную способность, растворимость) и количество обращающихся веществ. Оценка опасности высококумулятивных веществ в определенной мере предусмотрена введением наряду с максимальными среднесменных значений ПДК.
Важное значение для оценки реальной опасности веществ имеет знание особенностей действия на организм, которые также отражены в ГОСТ 12.1.005-88, где выделяются вещества, обладающие остронаправленным аллергеновым, канцерогенным и фиброгенным действием.
Оценка реальной опасности химических соединений в производственных условиях должна включать также возможность комбинированного и сочетанного действия ядов.
Достоверная информация о веществе, необходимая для оценки реальной опасности, должна быть представлена в паспорте безопасности вещества (материала). Такой паспорт составляет в соответствии с ГОСТ Р 50587-93 "Паспорт безопасности вещества (материала)" и в нем приводятся данные по физическим и химическим свойствам; токсичности; стабильности и химической активности; воздействии на окружающую среду.
Кроме этого, в паспорте должны быть представлены:
- правила обращения и хранения;
- перечень мер и средств обеспечения пожарной безопасности;
- меры первой помощи;
- меры по предотвращению чрезвычайных ситуаций;
- правила транспортирования;
- меры по утилизации и захоронению отходов.
Потребитель обеспечивается паспортом безопасности организацией (или лицом), ответственным за представление вещества (материала) на рынке.
Значительную трудность представляет собой оценка реальной опасности химических веществ при их комплексном воздействии. Поскольку пока недостаточно разработаны токсикологические критерии для характеристики комплексного воздействия веществ, оценка опасности при таком виде воздействия является одной из актуальных задач токсикологии.
2.1.9. Защита от воздействия вредных веществ
Основными мерами защиты работающих от воздействия вредных веществ являются:
- замена токсичных веществ на менее токсичные;
- внедрение технологических процессов, предусматривающих дистанционное управление ими;
- замена сухих способов переработки пылящих материалов мокрыми;
- герметизация оборудования и аппаратуры;
- локализация выделений вредных веществ с помощью местной вентиляции;
- совершенствование технологического оборудования;
- очистка технологических и вентиляционных выбросов от вредных веществ;
- контроль воздушной среды на содержание вредных веществ;
- лечебно-профилактические мероприятия, предусматривающие проведе- ние предварительных и периодических медицинских осмотров.
При значительной загрязненности воздушной среды вредными веществами, при аварийной разгерметизации оборудования используют средства индивидуальной защиты органов дыхания - противогазы (фильтрующие, изолирующие, шланговые), респираторы. Выбор средств защиты определяется видом вредных веществ и их концентрацией.
2.2 Вибрация
Малые механические колебания, возникающие в упругих телах или телах, находящихся под воздействием переменного физического поля, называются вибрацией. Воздействие вибрации на человека классифицируют:
·по способу передачи колебаний;по направлению действия вибрации;
·по временной характеристике вибрации.
В зависимости от способа передачи колебаний человеку вибрацию подразделяют:
·на общую, передающуюся через опорные поверхности на тело сидящего или стоящего человека,
·и локальную, передающуюся через руки человека. Вибрация, воздействующая на ноги сидящего человека, на предплечья, контактирующие с вибрирующими поверхностями рабочих столов, также относится к локальной.
По направлению действия вибрацию подразделяют:
на вертикальную, распространяющуюся по оси х, перпендикулярной к опорной поверхности; горизонтальную, распространяющуюся по оси у, от спины к груди;
·горизонтальную, распространяющуюся по оси г, от правого плеча к левому плечу.
По временной характеристике различают:
·постоянную вибрацию, для которой контролируемый параметр за время наблюдения изменяется не более чем в 2 раза (6 дБ);
· непостоянную вибрацию, изменяющуюся по контролируемым параметрам более чем в 2 раза.
Вибрация относится к факторам, обладающим высокой биологической активностью. Выраженность ответных реакций обусловливается главным образом силой энергетического воздействия и биомеханическими свойствами человеческого тела как сложной колебательной системы.
Мощность колебательного процесса в зоне контакта и время этого контакта являются главными параметрами, определяющими развитие вибрационных патологий, структура которых зависит от частоты и амплитуды колебаний, продолжительности воздействия, места приложения и направления оси вибрационного воздействия, демпфирующих свойств тканей, явлений резонанса и других условий.
Между ответными реакциями организма и уровнем воздействующей вибрации нет линейной зависимости. Причину этого явления видят в резонансном эффекте. При повышении частот колебаний более 0,7 Гц возможны резонансные колебания в органах человека. Резонанс человеческого тела, отдельных его органов наступает под действием внешних сил при совпадении собственных частот колебаний внутренних органов с частотами внешних сил. Область резонанса для головы в положении сидя при вертикальных вибрациях располагается в зоне между 20...30 Гц, при горизонтальных -1,5...2 Гц.
Особое значение резонанс приобретает по отношению к органу зрения. Расстройство зрительных восприятии проявляется в частотном диапазоне между 60 и 90 Гц, что соответствует резонансу глазных яблок. Для органов, расположенных в грудной клетке и брюшной полости, резонансными являются частоты 3...3.5 Гц. Для всего тела в положении сидя резонанс наступает на частотах 4...6 Гц.
Вибрационная патология стоит на втором месте (после пылевых) среди профессиональных заболеваний. Рассматривая нарушения состояния здоровья при вибрационном воздействии, следует отметить, что частота заболеваний определяется величиной дозы, а особенности клинических проявлений формируются под влиянием спектра вибраций.
Выделяют три вида вибрационной патологии от воздействия общей, локальной и толчкообразной вибраций. При действии на организм общей вибрации страдает в первую очередь нервная система и анализаторы: вестибулярный, зрительный, тактильный.
Вибрация является специфическим раздражителем для вестибулярного анализатора, причем линейные ускорения - для отолитового аппарата, расположенного в мешочках преддверия, а угловые ускорения - для полукружных каналов внутреннего уха. У рабочих вибрационных профессий отмечены головокружения, расстройство координации движений, симптомы укачивания, вестибуловегетативная неустойчивость. Нарушение зрительной функции проявляется сужением и выпадением отдельных участков полей зрения, снижением остроты зрения, иногда до 40 %, субъективно - потемнением в глазах.
Под влиянием общих вибраций отмечается снижение болевой, тактильной и вибрационной чувствительности. Особенно опасна толчкообразная вибрация, вызывающая микротравмы различных тканей с последующими реактивными изменениями. Общая низкочастотная вибрация оказывает влияние на обменные процессы, проявляющиеся изменением углеводного, белкового, ферментного, витаминного и холестеринового обменов, биохимических показателей крови.
Вибрационная болезнь от воздействия общей вибрации и толчков регистрируется у водителей транспорта и операторов транспортно-технологических машин и агрегатов, на заводах железобетонных изделий. Для водителей машин, трактористов, бульдозеристов, машинистов экскаваторов, подвергающихся воздействию низкочастотной и толчкообразной вибраций, характерны изменения в пояснично-крестцовом отделе позвоночника. Рабочие часто жалуются на боли в пояснице, конечностях, в области желудка, на отсутствие аппетита, бессонницу, раздражительность, быструю утомляемость.
В целом картина воздействия общей низко- и среднечастотной вибрации выражается общими вегетативными расстройствами с периферическими нарушениями, преимущественно в конечностях, снижением сосудистого тонуса и чувствительности. Бич современного производства, особенно машиностроения - локальная вибрация. Локальной вибрации подвергаются главным образом люди, работающие с ручным механизированным инструментом. Локальная вибрация вызывает спазмы сосудов кисти, предплечий, нарушая снабжение конечностей кровью.
Одновременно колебания действуют на нервные окончания, мышечные и костные ткани, вызывают снижение кожной чувствительности, отложение солей в суставах пальцев, деформируя и уменьшая подвижность суставов. Колебания низких частот вызывают резкое снижение тонуса капилляров, а высоких частот - спазм сосудов. Сроки развития периферических расстройств зависят не столько от уровня, сколько от дозы (эквивалентного уровня) вибрации в течение рабочей смены.
Преимущественное значение имеет время непрерывного контакта с вибрацией и суммарное время воздействия вибрации за смену. У формовщиков, бурильщиков, заточников, рихтовщиков при среднечастотном спектре вибраций заболевание развивается через 8...10 лет работы. Обслуживание инструмента ударного действия (клепка, обрубка), генерирующим вибрацию среднечастотного диапазона (30...125 Гц), приводит к развитию сосудистых, нервно-мышечных, костно-суставных и других нарушений через 12... 15 лет.
При локальном воздействии низкочастотной вибрации, особенно при значительном физическом напряжении рабочие жалуются на ноющие, ломящие, тянущие боли в верхних конечностях, часто по ночам. Одним из постоянных симптомов локального и общего воздействия является расстройство чувствительности. Наиболее резко страдает вибрационная, болевая и температурная чувствительность.
К факторам производственной среды, усугубляющим вредное воздействие вибраций на организм, относятся чрезмерные мышечные нагрузки, неблагоприятные микроклиматические условия, особенно пониженная температура, шум высокой интенсивности, психоэмоциональный стресс. Охлаждение и смачивание рук значительно повышают риск развития вибрационной болезни за счет усиления сосудистых реакций.
При совместном действии шума и вибрации наблюдается взаимное усиление эффекта в результате его суммации, а возможно, и потенцирования. Усугубляющее влияние сопутствующих факторов учитывается при расчете показателей вероятности вибрационной болезни.
2.3 Акустический шум
Акустический шум – беспорядочные звуковые колебания в атмосфере. Понятие акустического шума связано со звуковыми волнами (звуками), под которыми понимают распространяющиеся в окружающей среде и воспринимаемые ухом человека упругие колебания в частотномдиапазоне от 20 Гц до 20 кГц.
Характеристикой шума являются уровни звукового давления (УЗД) в октавных (в некоторых случаях 1/3 октавных) полосах частот и уровни звука или эквивалентные уровни звука (УЗ), измеряемые в децибелах (дБА).
Шум оказывает влияние на весь организм человека. Шум с уровнем звукового давления до 30-35 дБА привычен для человека и не беспокоит его. Повышение этого уровня до 40-70 дБА в условиях среды обитания создает значительную нагрузку на нервную систему, вызывая ухудшение самочувствия, и при длительном воздействий может быть причиной неврозов. Воздействие шума свыше 5 дБА может привести к потере слуха – профессиональной тугоухости. При действии шума высоких уровней (>40 дБА) возможен разрыв барабанных перепонок, а еще при более высоких (>160 дБА) и смерть.
Шумовое воздействие, сопровождающееся повреждением слухового анализатора, проявляется медленно прогрессирующим снижением звука. У некоторых лиц серьёзное шумовое повреждение слуха может наступить в первые месяцы воздействия, у других потеря слуха развивается постепенно. Снижение слуха до 10 дБА практически неощутимо, на 20 дБА – начинает серьёзно мешать человеку, так как нарушается способность слышать важные звуковые сигналы, наступает ослабление разборчивости речи.
Шум на рабочих местах. По данным Госсанэпиднадзора России, на производстве воздействию опасного и вредного шума, превышающего допустимые уровни подвергается свыше 37% работающих на 58% предприятий. На транспорте действию повышенного шума подвергается свыше 50% работающих. Особенно неблагоприятное положение наблюдается в промышленности строительных материалов, машиностроении, строительстве и др. отраслях.
Повышенный шум вызывает такие профессиональные заболевания, как шумовая болезнь и неврит слуховых нервов, которые наряду с вибрационной болезнью составляют свыше 30% общего числа профессиональных заболеваний.
2.3.1 Акустические загрязнения
Акустическими загрязнениямисчитаются повышенные шумы, вызванные различными источниками в диапазоне частоты свыше 20 Гц и до 20000 Гц. Шум воспринимается нами как беспорядочное сочетание звуков интенсивности и частоты, мешающие звуки. Восприятие шума, как правило, носит ассоциативный характер. Характерным признаком шума является его обременительность, т.е. неблагоприятный отклик в организме. Источниками шума являются транспорт, промышленные установки, строительство, сельскохозяйственные агрегаты и пр. (табл.6.1.1). Интенсивный шум при длительном воздействии, является одним из наиболее опасных и вредных факторов окружающей среды. Под действием шума снижается острота слуха (вызывает тугоухость), повышается кровяное давление, ухудшается качество перерабатываемой информации, снижается производительность труда и пр.
Проблема защиты городского населения от повышенного шума имеет несколько аспектов.
Это проблема сохранения здоровья: 16% населения Земли (~ 1 млрд) имеют нарушения слуха. Медики отмечают за последние десятилетия увеличение числа сердечно-сосудистых заболеваний (особенно в районах с повышенными уровнями шума).
Проблема защиты населения от повышенного уровня шума – проблема социальная. Понятие акустического состояния среды обитания становится одним ключевых понятий уровня жизни.
Установлены нормы шума для жилых помещений, рабочих мест, транспортных средств, жилой застройке и пр.
По временным характеристикам акустические воздействия подразделяются на постоянные (например, за рабочую смену), и непостоянные.
Таблица 2.3.1
Основные источники шума в городах
Источник шума | Вклад в общий уровень шума в городах, дБА |
Автомобильный транспорт | 70-78 |
Железнодорожный транспорт | 5-6 |
Промышленные предприятия, строительство | 4-5 |
Электрический муниципальный транспорт | 3-6 |
Авиационный транспорт | 2-3 |
Прочие источники | 2-11 |
Область пространства, в которой распространяются звуковые волны, называется звуковым полем. В каждой точке звукового поля давление и скорость движения частиц воздуха изменяются во времени.
Основная причина повышенного шумового загрязнения в городах ‒ противоречие между принципом «не навреди» и реалиями технической политики городов. К основным чертам последней относятся:
- близкое расположение источников шума – транспортных магистралей и жилой застройки;
- увеличение плотности улично-дорожной сети и застройки;
- рост интенсивности и скорости движения транспорта.
2.4 Инфразвук
В течение последних десятилетий резко возросло количество разного рода машин и других источников шума, распространение портативных радиоприемников и магнитофонов, нередко включаемых на большую громкость, увлечение громкой популярной музыкой. Отмечено, что в городах каждые 5-10 лет уровень шума возрастает на 5 дБ (децибел). Следует учитывать, что для отдаленных предков человека шум представлял собой сигнал тревоги, указывал на возможность опасности. При этом быстро активизировалась симпатико-адреналовая и сердечно-сосудистая системы, газообмен и менялись и другие виды обмена (повышался в крови уровень сахара, холестерина), готовя организм к борьбе или бегству. Хотя у современного человека эта функция слуха потеряла такое практическое значение, "вегетативные реакции борьбы за существование" сохранились. Так, даже кратковременный шум в 60-90 дБ вызывает увеличение секреции гормонов гипофиза, стимулирующих выработку многих других гормонов, в частности, катехоламинов (адреналина и норадреналина), усиливается работа сердца, суживаются сосуды, повышается артериальное давление (АД). При этом отмечено, что наиболее выраженное повышение АД отмечается у больных гипертонией и лиц с наследственной предрасположенностью к ней. Под воздействием шума нарушается деятельность мозга: меняется характер электроэнцефалограммы, снижается острота восприятия, умственная работоспособность. Отмечено ухудшение пищеварения. Известно, что длительное пребывание в шумной обстановке ведет к снижению слуха. В зависимости от индивидуальной чувствительности люди поразному оценивают шум как неприятный и мешающий им. При этом интересующая слушателя музыка и речь даже в 40-80 дБ могут переноситься относительно легко. Обычно слух воспринимает колебания в пределах 16-20000 Гц (колебаний в секунду). Важно подчеркнуть, что неприятные последствия вызывает не только чрезмерный шум в слышимом диапазоне колебаний: ультра- и инфразвук в невоспринимаемых слухом человека диапазонах (выше 20 тыс.Гц и ниже 16Гц) также вызывает нервное перенапряжение, недомогание, головокружение, изменение деятельности внутренних органов, особенно нервной и сердечно-сосудистой систем. Установлено, что у жителей райнов, расположенных рядом с крупными международными аэропортами, заболеваемость гипертонией отчетливо выше, чем в более тихом районе того же города.
При этих наблюдениях-открытиях начали появлятся методы целенаправленного воздействия на человека. Воздействовать на ум и поведение человека можно различными путями, один из которых требует специальной аппаратуры (технотронные приемы, зомбирование...).
2.4.1 Инфразвук в нашем повсевдневном окружении
Исследования по генерированию инфразвука и воздействию его на человека развернулись во всех странах мира. Можно сослаться, например, на материалы Международного коллоквиума по инфразвуку, состоявшегося в Париже в середине 70-х годов. Эти материалы составляли сборник объемом около 500 страниц. Виднейший акустик Т. Тарноци доложил о гибели в гроте Бордаль (Верхняя Венгрия) трех туристов в условиях резкого изменения атмосферного давления. В сочетании с узким и длинным входным коридором грот являл собой подобие низкочастотного резонатора, а это могло послужить причиной резкого увеличения колебаний давления инфразвуковой частоты. Переодически наблюдавшееся появление судов- “летучих голандцев” с мертвыми на борту также иногда предположительно приписывали мощным инфразвуковым колебаниям, возникающим во время сильных штормов, тайфунов. Снабдить бы все суда простейшими инфразвуковыми самописцами уровня, чтобы можно было сопоставить затем изменения самочувствия экипажа с записанными колебаниями давления воздушной среды.
Пока же специалисты по охране окружающей среды ограничились тем, что установили, например, приемники инфразвука в верхних частях “точечных” зданий и при этом обнаружили следующее. Во время сильных порывов ветра уровень инфразвуковых колебаний (частоты 0.1 Гц) достигал на тридцатом этаже 140 дБ, то есть даже несколько превышал порог болевого ощущения уха в диапазоне слышимых частот.