Сущность процесса выпрямления рассмотрим на примере простейшей однофазной однополупериодной (однотактной) схемы выпрямления. В этой схеме (рисунок 76) трансформатор имеет одну вторичную обмотку, напряжение u2которой изменяется по синусоидальному закону. Ток в цепи нагрузки проходит только в положительные полупериоды, когда точка а вторичной обмотки, к которой присоединен анод вентиля V1, имеет положительный потенциал относительно точки b, к которой через нагрузку присоединен катод.
В результате напряжение u2оказывается приложенным к резистору Rd, через который начинает протекать ток нагрузки id.
Поскольку при активной нагрузке ток по фазе совпадает с напряжением, вентиль V1 будет пропускать ток до тех пор, пока напряжение u2 не снизится до нуля. В отрицательные полупериоды (интервал времени t1 – t2 на рис. 76) к вентилю V1 прикладывается все напряжение источника U2. Оно является для диода обратным, и он будет закрыт.
Таким образом, на резисторе Rd будет пульсирующее напряжение udтолько одной полярности, т.е. выпрямленное напряжение, которое будет описываться положительными полуволнами напряжения u2 вторичной обмотки трансформатора Т. Ток в нагрузке id проходит в одном направлении, но имеет также пульсирующий характер и представляет собой выпрямленный ток.
Рисунок 76 - Однофазный однополупериодный выпрямитель: схема и диаграммы напряжений и токов на элементах схемы
Выпрямленные напряжения udи ток id содержат постоянную (полезную) составляющую Ud, Id и переменную составляющую (пульсации). Качественная сторона работы выпрямителя оценивается соотношениями между полезной составляющей и пульсациями напряжения и тока. Коэффициент пульсаций данной схемы составляет 1,57.
|
Для однополупериодной схемы справедливы следующие соотношения между напряжениями, токами и мощностями в отдельных элементах выпрямителя по отношению к соответствующим средним значениям на нагрузке.
Среднее за период значение выпрямленного напряжения при идеальных вентилях и трансформаторе
Ud = 0,45 U2
Максимальное значение обратного напряжения на вентиле
Uобр.max = √2U2 = 3,14Ud
где U2 - действующее значение напряжения вторичной обмотки трансформатора Т
Среднее значение тока, протекающего через вентиль и нагрузку
Iв.ср= Id= Im/π,
где Im = Um/Rd - амплитуда тока цепи.
Действующее значение тока цепи
I2 = Im /2
Таким образом, в однополупериодной схеме выпрямления среднее значение выпрямленного тока в π раз меньше его амплитуды, а действующее значение - в 2 раза меньше амплитуды тока.
Средняя мощность, отдаваемая в нагрузку, определяется
Pd = UdId
Расчетную (типовую) мощность Sт трансформатора, определяющую его габариты, можно представить как полусумму расчетных мощностей первичной S1 = U1I1 и вторичной S2 = U2I2 обмоток, т.е.
Sт = (S1 + S2) /2 = 3,09Pd
Следовательно, расчетная мощность трансформатора, работающего на выпрямитель, больше мощности в нагрузке в 3,09 раза, так как во вторичной обмотке проходит несинусоидальный ток, имеющий постоянную и переменные составляющие, а в первичной обмотке кроме тока основной частоты f1- токи высших гармоник. По отношению к сети питания эти токи являются реактивными и, не создавая полезной мощности, лишь нагревают обмотки трансформатора выпрямителя. Наличие во вторичной обмотке постоянной составляющей тока Id увеличивает степень насыщения магнитпровода трансформатора, что вызывает возрастание тока холостого хода, и как следствие этого возникает необходимость в завышении расчетной мощности трансформатора.
|
Действующее значение тока вторичной обмотки трансформатора определяется формулой
I2 = 1,57Id
Действующее значение напряжения вторичной обмотки
U2 = 2,22Ud
Действующее значение тока первичной обмотки с учетом коэффициента трансформации трансформатора n = U1/U2 равно
I1 = I2/n
Недостатки этой схемы выпрямления следующие: плохое использование трансформатора, большое обратное напряжение на вентилях, большой коэффициент пульсации выпрямленного напряжения.
Достоинства выпрямителя: простота схемы и питающего трансформатора; применяется только один вентиль или одна группа последовательно соединенных вентилей.