Из истории открытия «частиц наследственности»




Изучая под микроскопом клетки растений и животных, многие ботаники и зоологи еще в середине XIX века обратили внимание на тончайшие нити и мельчайшие кольцевидные структуры в ядре. Чаще других первооткрывателем хромосом называют немецкого анатома Вальтера Флемминга. Именно он применил анилиновые красители для обработки ядерных структур. Обнаруженное вещество Флемминг назвал "хроматином" за его способность к окрашиванию. Термин «хромосомы» в 1888 году ввел в научный оборот Генрих Вальдейер. Одновременно с Флеммингом искал ответ на вопрос о том, что такое хромосома, бельгиец Эдуард ван Бенеден. Чуть раньше немецкие биологи Теодор Бовери и Эдуард Страсбургер провели серию экспериментов, доказывающих индивидуальность хромосом, постоянство их числа у разных видов живых организмов.

Предпосылки хромосомной теории наследственности

Американский исследователь Уолтер Саттон выяснил, сколько хромосом содержится в клеточном ядре. Ученый считал эти структуры носителями единиц наследственности, признаков организма. Саттон обнаружил, что хромосомы состоят из генов, с помощью которых потомкам от родителей передаются свойства и функции. Генетик в своих публикациях дал описания хромосомных пар, их движения в процессе деления клеточного ядра. Независимо от американского коллеги, работы в том же направлении вел Теодор Бовери. Оба исследователя в своих трудах изучали вопросы передачи наследственных признаков, сформулировали основные положения о роли хромосом (1902-1903). Дальнейшая разработка теории Бовери-Саттона происходила в лаборатории нобелевского лауреата Томаса Моргана. Выдающийся американский биолог и его помощники установили ряд закономерностей размещения генов в хромосоме, разработали цитологическую базу, объясняющую механизм законов Грегора Менделя — отца-основателя генетики.

Строение хромосом

Хромосомы — наиважнейший элемент клетки. Они отвечают за передачу и реализацию наследственной информации и в эукариотической клетке локализуются в ядре. По химическому строению хромосомы представляют собой комплексы дезоксирибонуклеиновых кислот (ДНК) и связанных с ними белков, а также небольшого количества других веществ и ионов. Таким образом, хромосомы являются дезоксирибонуклеопротеидами (ДНП).

Каждая хромосома в интерфазе включает одну длинную двухцепочечную молекулу ДНК. Ген — это последовательность определенного количество следующих друг за другом нуклеотид, составляющих ДНК. Гены, входящие в состав ДНК одной хромосомы, следуют друг за другом. В интерфазе в клетке протекает множество процессов, многие участки хромосомы деспирализованы в разной степени. На многих участках ДНК идет синтез РНК.

В период клеточного деления (как при митозе, так и при мейозе) хромосомы спирализуются (происходит их компактизация). При этом их длина сокращается, а синтез на них РНК становится невозможным. До спирализации каждая хромосома удваивается. Говорят, что хромосома становится состоящей из двух хроматид. То есть в период интерфазы хромосома состояла из одной хроматиды.

В компактизации хроматид важную роль играют белки, входящие в состав хромосомы.

Таким образом, в зависимости от фазы клеточного цикла по внешнему строению хромосомы могут быть представлены 1) в виде невидимого в световой микроскоп хроматина (в интерфазе) и состоять из одной хроматиды или 2) в форме двух спирализованных хроматид, видимых в световой микроскоп (в фазах клеточного деления, начиная с метафазы).

В строении хромосом есть еще один важный элемент — центромера (первичная перетяжка). Она имеет белковую природу и отвечает за движение хромосомы, также к ней крепятся нити веретена деления. В зависимости от места расположения центромеры различают равноплечие (метацентрические), неравноплечие (субметацентрические) и палочковидные (акроцентрические) хромосомы. У первых центромера находится по-середине, разделяя каждую хроматиду на два равных плеча, у вторых плечи неравной длины, а у третьих центромера находится у одного из концов хроматиды.

В удвоенных хромосомах хроматиды соединены между собой в области центромеры.

Наличие первичной перетяжки в строении хромосом обязательно. Однако кроме них бывают вторичные перетяжки (ядрышковые организаторы), они наблюдаются не у всех хромосом. В ядре на вторичных перетяжках хромосом происходит синтез ядрышек.

На концах хроматид находятся так называемые теломеры. Они препятствуют слипанию хромосом.

В гаплоидном наборе каждая хромосома по своему строению уникальна. Положение центромеры (и обусловленные этим длины плеч хромосомы) позволяет отличать каждую среди остальных.

В диплоидном наборе у каждой хромосомы есть гомологичная ей, имеющая такое же строение и тот же набор генов (но возможно других их аллелей) и доставшаяся от другого родителя.

Для каждого вида живых организмов характерен свой кариотип, т. е. свое количество хромосом и их особенности (длина, положение центромер, особенности химического строения). По кариотипу можно определить биологический вид.

Формы хромосом

Каждая хромосома обладает индивидуальным строением, отличается от других особенностями окрашивания. При изучении морфологии важно определить положение центромеры, длину и размещение плеч относительно перетяжки. В набор хромосом обычно входят следующие формы: метацентрические, или равноплечие, для которых характерно срединное расположение центромеры; субметацентрические, или неравноплечие (перетяжка смещена в сторону одного из теломеров); акроцентрические, или палочковидные, в них центромера находится практически на конце хромосомы; точковые с трудно поддающейся определению формой. Функции хромосом Хромосомы состоят из генов — функциональных единиц наследственности. Теломеры — концы плеч хромосомы. Эти специализированные элементы служат для защиты от повреждения, препятствуют слипанию фрагментов. Центромера выполняет свои задачи при удвоении хромосом. На ней есть кинетохор, именно к нему крепятся структуры веретена деления. Каждая пара хромосом индивидуальна по месту расположения центромеры. Нити веретена деления работают таким образом, что в дочерние клетки отходит по одной хромосоме, а не обе. Равномерное удвоение в процессе деления обеспечивают точки начала репликации. Дупликация каждой хромосомы начинается одновременно в нескольких таких точках, что заметно ускоряет весь процесс деления.

Роль ДНК и РНК

Выяснить, что такое хромосома, какую функцию выполняет эта ядерная структура, удалось после изучения ее биохимического состава и свойств. В эукариотических клетках ядерные хромосомы образованы конденсированным веществом — хроматином. По данным анализа, в его состав входят высокомолекулярные органические вещества: дезоксирибонуклеиновая кислота (ДНК); рибонуклеиновая кислота (РНК); белки-гистоны.

Нуклеиновые кислоты принимают самое непосредственное участие в биосинтезе аминокислот и белков, обеспечивают передачу наследственных признаков из поколения в поколение. ДНК содержится в ядре эукариотической клетки, РНК сосредоточена в цитоплазме. Гены Рентгеноструктурный анализ показал, что ДНК образует двойную спираль, цепи которой состоят из нуклеотидов. Они представляют собой углевод дезоксирибозу, фосфатную группу и одно из четырех азотистых оснований: А - аденин. Г - гуанин. Т - тимин. Ц - цитозин. Участки спиралевидных дезоксирибонуклеопротеидных нитей — это гены, несущие закодированную информацию о последовательности аминокислот в белках или РНК. При размножении наследственные признаки от родителей потомству передаются в виде аллелей генов. Они определяют функционирование, рост и развитие конкретного организма. По мнению ряда исследователей, те участки ДНК, что не кодируют полипептиды, выполняют регулирующие функции. Геном человека может насчитывать до 30 тыс. генов. Набор хромосом Общее число хромосом, их особенности — характерный признак вида. У мухи-дрозофилы их количество — 8, у приматов — 48, у человека — 46. Это число является постоянным для клеток организмов, которые относятся к одному виду. Для всех эукариотов существует понятие «диплоидные хромосомы». Это полный набор, или 2n, в отличие от гаплоидного — половинного количества (n). Хромосомы в составе одной пары гомологичны, одинаковы по форме, строению, местоположению центромер и других элементов. Гомологи имеют свои характерные особенности, которые их отличают от других хромосом в наборе. Окрашивание основными красителями позволяет рассмотреть, изучить отличительные черты каждой пары. Диплоидный набор хромосом присутствует в соматических клетках, гаплоидный же — в половых (так называемых гаметах). У млекопитающих и других живых организмов с гетерогаметным мужским полом формируются два вида половых хромосом: Х-хромосома и Y. Самцы обладают набором XY, самки — XX. Хромосомный набор человека Клетки организма человека содержат 46 хромосом. Все они объединяются в 23 пары, составляющие набор. Есть два типа хромосом: аутосомы и половые. Первые образуют 22 пары — общие для женщин и мужчин. От них отличается 23-я пара — половые хромосомы, которые в клетках мужского организма являются негомологичными. Генетические черты связаны с половой принадлежностью. Для их передачи служат Y и Х-хромосома у мужчин, две X у женщин. Аутосомы содержат оставшуюся часть информации о наследственных признаках. Существуют методики, позволяющие индивидуализировать все 23 пары. Они хорошо различимы на рисунках, когда окрашены в определенный цвет. Заметно, что 22-я хромосома в геноме человека - самая маленькая. Ее ДНК в растянутом состоянии имеет длину 1,5 см и насчитывает 48 млн пар азотистых оснований. Специальные белки гистоны из состава хроматина выполняют сжатие, после чего нить занимает в тысячи раз меньше места в ядре клетки. Под электронным микроскопом гистоны в интерфазном ядре напоминают бусы, нанизанные на нить ДНК.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-11-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: