Представление в компьютере целых чисел
Целые числа могут представляться в компьютере со знаком или без знака.
Целые числа без знака
Обычно занимают в памяти компьютера один или два байта. В однобайтовом формате принимают значения от 000000002 до 111111112. В двубайтовом формате - от 00000000 000000002 до 11111111 111111112.
Диапазоны значений целых чисел без знака
Формат числа в байтах | Диапазон | |
Запись с порядком | Обычная запись | |
0... 28-1 | 0... 255 | |
0... 216-1 | 0... 65535 |
Примеры:
а) число 7210 = 10010002 в однобайтовом формате:
б) это же число в двубайтовом формате:
в) число 65535 в двубайтовом формате:
Целые числа со знаком
Обычно занимают в памяти компьютера один, два или четыре байта, при этом самый левый (старший) разряд содержит информацию о знаке числа.
Диапазоны значений целых чисел со знаком
Формат числа в байтах | Диапазон | |
Запись с порядком | Обычная запись | |
-27... 27-1 | -128... 127 | |
-215... 215-1 | -32768... 32767 | |
-231... 231-1 | -2147483648... 2147483647 |
Рассмотрим особенности записи целых чисел со знаком на примере однобайтового формата, при котором для знака отводится один разряд, а для цифр абсолютной величины - семь разрядов.
В компьютерной технике применяются три формы записи (кодирования) целых чисел со знаком: прямой код, обратный код, дополнительный код. |
Последние две формы применяются особенно широко, так как позволяют упростить конструкцию арифметико-логического устройства компьютера путем замены разнообразных арифметических операций операцией cложения.
Положительные числа в прямом, обратном и дополнительном кодах изображаются одинаково - двоичными кодами с цифрой 0 в знаковом разряде. Например:
|
Отрицательные числа в прямом, обратном и дополнительном кодах имеют разное изображение.
1. Прямой код. В знаковый разряд помещается цифра 1, а в разряды цифровой части числа — двоичный код его абсолютной величины. Например:
2. Обратный код. Получается инвертированием всех цифр двоичного кода абсолютной величины числа, включая разряд знака: нули заменяются единицами, а единицы — нулями. Например:
3. Дополнительный код. Получается образованием обратного кода с последующим прибавлением единицы к его младшему разряду. Например:
Обычно отрицательные десятичные числа при вводе в машину автоматически преобразуются в обратный или дополнительный двоичный код и в таком виде хранятся, перемещаются и участвуют в операциях. При выводе таких чисел из машины происходит обратное преобразование в отрицательные десятичные числа.
Представление в компьютере вещественных чисел
Система вещественных чисел в математических вычислениях предполагается непрерывной и бесконечной, т.е. не имеющей ограничений на диапазон и точность представления чисел. Однако в компьютерах числа хранятся в регистрах и ячейках памяти с ограниченным количеством разрядов. Вследствие этого система вещественных чисел, представимых в машине, является дискретной (прерывной) и конечной.
При написании вещественных чисел в программах вместо привычной запятой принято ставить точку. Для отображения вещественных чисел, которые могут быть как очень маленькими, так и очень большими, используется форма записи чисел с порядком основания системы счисления. Например, десятичное число 1.25 в этой форме можно представить так:
|
1.25 . 100 = 0.125 . 101 = 0.0125 . 102 =...
или так:
12.5 . 10-1 = 125.0 . 10-2 = 1250.0 . 10-3 =....
Любое число N в системе счисления с основанием q можно записать в виде N = M . qp, где M — множитель, содержащий все цифры числа (мантисса), а p — целое число, называемое порядком. Такой способ записи чисел называется представлением числа с плавающей точкой. |
Если "плавающая" точка расположена в мантиссе перед первой значащей цифрой, то при фиксированном количестве разрядов, отведённых под мантиссу, обеспечивается запись максимального количества значащих цифр числа, то есть максимальная точность представления числа в машине. Из этого следует:
Мантисса должна быть правильной дробью, у которой первая цифра после точки (запятой в обычной записи) отлична от нуля: 0.12 <= | M | < 1. Если это требование выполнено, то число называется нормализованным |
Мантиссу и порядок q -ичного числа принято записывать в системе с основанием q, а само основание — в десятичной системе. Примеры нормализованного представления:
Десятичная система Двоичная система
753.15 = 0.75315 . 103; —101.01 = —0.10101 . 211 (порядок 112 = 310)
— 0.000034 = — 0.34 . 10-4; 0.000011 = 0.11 . 2-100 (порядок —1002 = —410).
Вещественные числа в компьютерах различных типов записываются по-разному, тем не менее, все компьютеры поддерживают несколько международных стандартных форматов, различающихся по точности, но имеющих одинаковую структуру следующего вида:
Здесь порядок n -разрядного нормализованного числа задается в так называемой смещенной форме: если для задания порядка выделено k разрядов, то к истинному значению порядка, представленного в дополнительном коде, прибавляют смещение, равное (2k-1 — 1). Например, порядок, принимающий значения в диапазоне от —128 до +127, представляется смещенным порядком, значения которого меняются от 0 до 255.
|
Использование смещенной формы позволяет производить операции над порядками, как над беззнаковыми числами, что упрощает операции сравнения, сложения и вычитания порядков, а также упрощает операцию сравнения самих нормализованных чисел.
Чем больше разрядов отводится под запись мантиссы, тем выше точность представления числа. Чем больше разрядов занимает порядок, тем шире диапазон от наименьшего отличного от нуля числа до наибольшего числа, представимого в машине при заданном формате.
Стандартные форматы представления вещественных чисел: 1) одинарный — 32-разрядное нормализованное число со знаком, 8-разрядным смещенным порядком и 24-разрядной мантиссой (старший бит мантиссы, всегда равный 1, не хранится в памяти, и размер поля, выделенного для хранения мантиссы, составляет только 23 разряда). 2) двойной — 64-разрядное нормализованное число со знаком, 11-разрядным смещенным порядком и 53-разрядной мантиссой (старший бит мантиссы не хранится, размер поля, выделенного для хранения мантиссы, составляет 52 разряда). 3) расширенный — 80-разрядное число со знаком, 15-разрядным смещенным порядком и 64-разрядной мантиссой. Позволяет хранить ненормализованные числа. |
Следует отметить, что вещественный формат с m -разрядной мантиссой позволяет абсолютно точно представлять m -разрядные целые числа, т. е. любое двоичное целое число, содержащее не более m разрядов, может быть без искажений преобразовано в вещественный формат.