Моделирование пласта и процессов вытеснения нефти




Центральный этап моделирования - постановка соответствующих процессу разработки нефтяного месторождения математических задач, включающих дифференциальные уравнения, начальные и граничные условия. Процедуры расчетов на основе моделей называют методиками расчетов.

Дифференциальные уравнения, описывающие процессы разработки нефтяных месторождений, основаны на использовании двух фундаментальных законов природы - закона сохранения вещества и закона сохранения энергии, а также на целом ряде физических, физико-химических, химических законов и специальных законах фильтрации.

Закон сохранения вещества в моделях процессов разработки месторождений записывают либо в виде, дифференциального уравнения неразрывности массы вещества, именуемого часто просто уравнением неразрывности, либо в виде формул, выражающих материальный баланс веществ в пласте в целом. В последнем случае закон сохранения вещества используют непосредственно для расчета данных процессов разработки месторождений, а соответствующий ему метод расчета получил название метода материального баланса.

Закон сохранения энергии используют в моделях разработки нефтяных месторождений в виде дифференциального уравнения сохранения энергии движущихся в пластах веществ.

Нефтяные месторождения как объекты природы обладают весьма разнообразными свойствами. Известно, что нефть может насыщать не только пористые песчаники, но и находиться в микроскопических трещинах, кавернах, имеющихся в известняках, доломитах и даже в изверженных породах.

Одна из основных особенностей нефтегазосодержащих пород - различие коллекторских свойств (пористости, проницаемости) на отдельных участках пластов. Эту пространственную изменчивость свойств пород-коллекторов нефти и газа называют литологической неоднородностью пластов.

Вторая основная особенность нефтегазоносных коллекторов - наличие в них трещин, т.е. трещиноватость пластов.

При разработке месторождений эти особенности нефтегазоносных пород оказывают наиболее существенное влияние на процессы извлечения из них нефти и газа.

Модели пласта

Модель пласта - это система количественных представлений о его геолого-физических свойствах, используемая в расчетах разработки нефтяного месторождения. Модели пластов с известной степенью условности подразделяют на детерминированные и вероятностно-статистические.

Детерминированные модели - это такие модели, в которых стремятся воспроизвести как можно точнее фактическое строение и свойства пластов. Другими словами, детерминированная модель при все более детальном учете особенностей пласта должна стать похожей на «фотографию» пласта. Практическое применение детерминированных моделей пластов стало возможным благодаря широкому развитию быстродействующей вычислительной техники и соответствующих математических методов. При расчете данных процессов разработки нефтяного месторождения с использованием детерминированной модели всю площадь пласта или его объем разбивают на определенное число ячеек, в зависимости от заданной точности расчета, сложности процесса разработки и мощности ЭВМ. Каждой ячейке придают те свойства, которые присущи пласту в области, соответствующей ее положению.

Дифференциальные уравнения разработки месторождения заменяют конечно-разностными соотношениями, а затем производят расчет на ЭВМ.

Вероятностно-статистические модели не отражают детальные особенности строения и свойства пластов. При их использовании ставят в соответствие реальному пласту некоторый гипотетический пласт, имеющий такие же вероятностно-статистические характеристики, что и реальный. К числу наиболее известных и чаще всего используемых в теории и практике разработки нефтяных месторождений вероятностно-статистических моделей пластов относятся следующие.

Модель однородного пласта. В этой модели основные параметры реального пласта (пористость, проницаемость), изменяющиеся от точки к точке, усредняют. Часто, используя модель такого пласта, принимают гипотезу и о его изотропности, т.е. равенстве проницаемостей в любом направлении, исходящем из рассматриваемой точки пласта. Однако иногда считают пласт анизотропным. При этом принимают, что проницаемость пласта по вертикали (главным образом вследствие напластования) отличается от его проницаемости по горизонтали. Модель однородного в вероятностно-статистическом смысле пласта используют для пластов с действительной небольшой неоднородностью.

Наиболее просты модели однородного пласта в виде толщи горной породы с одинаковыми во всех точках физическими свойствами. Непроницаемые верхняя (кровля) и нижняя (подошва) границы ее параллельны и горизонтальны.

Свойства пласта в количественном выражении определяют как средневзвешенные по объему величины:

  (9.1)

Чаще используют средневзвешенные по площади залежи величины, которые устанавливают с помощью карт равных значений рассматриваемых параметров:

  (9.2)

где - параметр, определяемый как средний между двумя соседними линиями равных его значений; - площадь, образованная двумя соседними линиями с параметрами и ; - общая площадь залежи.

Модель зонально-неоднородного пласта, свойства которого не изменяются по толщине, а на его площади выделяются зоны прямоугольной или квадратной формы с различными свойствами. Каждую зону можно рассматривать как элементарный однородный объем пласта (сторона квадрата) размером больше или равным расстоянию между соседними скважинами.

Модель слоисто-неоднородного пласта представляет собой пласт, в пределах которого выделяются слои с непроницаемыми кровлей и подошвой, характеризующиеся различными свойствами. По площади распространения свойства каждого слоя остаются неизменными. Сумма всех слоев равна общей нефтенасыщенной толщине пласта, т.е.

,   (9.3)

где n - число слоев.

Модель зонально-неоднородного и слоисто-неоднородного пласта объединяет характеристики предыдущих двух моделей. Для иллюстрации на рис. 9.5 изображена схематично модель такого пласта.

 

Рис.9.5 - Модель зонально-неоднородного и слоисто-неоднородного пласта

 

Модель пласта с двойной пористостью представляет собой пласт, сложенный породами с первичной (гранулярной) и вторичной (трещиноватой) пористостью. По первичной пористости определяют запасы углеводородов в пласте, поскольку коэффициент пористости на порядок больше коэффициента трещиноватости. Однако гидродинамическое движение жидкостей и газов, вызванное перепадом давления, происходит по системе трещин. Считают, что весь объем пласта равномерно пронизан системой трещин. Расстояния между двумя соседними трещинами значительно меньше расстояния между двумя соседними скважинами.

Модель зонально-неоднородного и слоисто-неоднородного пласта с двойной пористостью объединяет характеристики двух предыдущих моделей и наиболее полно отражает особенности реальных продуктивных пластов. На основе этой модели трудно определять показатели процесса разработки месторождения.

Вероятностно-статистическая модель неоднородности пластов. В этой модели неоднородный пласт представлен в виде набора параллельно работающих цилиндрических (призматических) или конических трубок тока с неодинаковой проницаемостью, расположенных вдоль направления фильтрации и пересекающихся рядами добывающих и нагнетательных скважин. Плотность распределения, длину и площадь поперечного сечения трубок выбирают на основании изучения геологического строения залежи таким образом, чтобы полный их набор соответствовал по проницаемости набору действительных трубок тока в пласте. Распределение трубок тока по проницаемости обычно устанавливают по результатам статистического анализа проницаемости кернового материала или по геофизическим данным. Опыт показывает, что часто распределение проницаемости образцов керна подчиняется логарифмически нормальному закону или же описывается гамма-распределением и различными модификациями распределения Максвелла.

Прерывистость пласта учитывается длиной трубок тока, непрерывная его часть моделируется трубками, простирающимися от начала до конца залежи, а линзы и полулинзы - короткими трубками, соответствующими по длине их размерам.

Модель пласта с модифицированными относительными проницаемостями.

Если принять, что фазовая проницаемость для воды зависит от остаточной нефтенасыщенности и насыщенности связанной водой:

(9.4)

то расход воды , поступающей в слой толщиной , определим по формуле

(9.5)

где - абсолютная проницаемость слоя; - ширина слоя; - длина слоя; - перепад давления на расстоянии ; - вязкость воды.

Формула (9.5) справедлива в предположении, что в обводнившемся слое нефть вытесняется мгновенно по модели поршневого вытеснения до насыщенности . В таких слоях движется только вода. В необводнившихся слоях движется только нефть в присутствии связанной воды с насыщенностью . Если в слое содержится только вода, ее расход составит:

(9.6)

Если к рассматриваемому моменту времени обводнились слои общей толщиной , то при суммарный расход воды

(9.7)

При отсутствии остаточной нефти расход воды через обводнившиеся слои будет

(9.8)

Учитывая, что распределение проницаемости по слоям описывается каким-либо вероятностно-статистическим законом, модифицированную относительную проницаемость можно представить в виде:

для воды

(9.9)

для нефти

;     (9.10)

где - проницаемость обводнившегося слоя.

Модифицированную водонасыщенность пласта определяют по отношению объема связанной воды и воды, внедрившейся в слои, к поровому объему пласта:

(9.11)

Модифицированные относительные проницаемости для воды и нефти представляют соответственно доли воды и нефти в общей производительности всех слоев. В общем случае они пропорциональны обводненности и содержанию нефти в добываемой жидкости.

Описанную модель приближают к реальной, рассматривая процесс непоршневого вытеснения нефти водой для каждого слоя. Анализируя характер обводнения продукции скважин, можно построить характеристику обводнения пласта и, решая обратную гидродинамическую задачу, уточнить модифицированные проницаемости, т. е. адаптировать модель к реальному процессу. В этом случае модифицированные показатели интегрально отражают все особенности реального пласта и процессов, происходящих при их разработке.

Модели вытеснения нефти

Рассмотрим модели процесса вытеснения нефти водой (газом).

Модель поршневого вытеснения. Предполагается движущийся в пласте вертикальный фронт (границы), впереди которого нефтенасыщенность равна начальной (), а позади остается промытая зона с остаточной нефтенасыщенностью . На рис.9.6 схематически показан профиль насыщенности при фиксированном положении фронта . Перед фронтом фильтруется только нефть, а позади - только вода.

насыщенность: 1 - водой; 2 – нефтью

Рис.9.6 - Модель поршневого вытеснения нефти водой

 

В соответствии с этой моделью полное обводнение продукции скважин должно произойти мгновенно в момент подхода фронта вытеснения к скважинам.

Модель непоршневого вытеснения (рис.9.7). По схеме Бакли - Леверетта предполагается в пласте движущийся фронт вытеснения. Скачок нефтенасыщенности на нем значительно меньше, чем при поршневом вытеснении.

насыщенность: 1 - водой; 2 – нефтью

Рис. 9.7 - Модель непоршневого вытеснения нефти водой

 

Перед фронтом вытеснения движется только нефть, позади него - одновременно нефть и вода со скоростями, пропорциональными соответствующим фазовым проницаемостям. Причем по мере продвижения фронта вытеснения скорости изменяются не только в зависимости от насыщенности в пласте, но и во времени. В момент подхода фронта к скважине происходит мгновенное обводнение до некоторого значения, соответствующего скачку нефтенасыщенности на фронте , а затем обводненность медленно нарастает.

Уравнение неразрывности

Выведем вначале уравнение неразрывности массы вещества при его одномерном прямолинейном движении в пласте. Масса вещества плотностью в элементе пласта (рис. 9.8) длиной , толщиной и шириной , измеряемой в направлении, перпендикулярном к плоскости при пористости пласта , составит

    (9.12)
   
Рис. 9.8 - Схема элементарногообъема прямолинейного пласта Рис. 9.9 - Схема элементарного пласта в трехмерном случае

 

Если считать, что в элемент пласта через его левую грань поступает вещество с массовой скоростью , вытесняется из элемента с массовой скоростью и , а накопленный объем его за время , получим с учетом того, что в элемент вошло больше вещества, чем из него вышло:

    (9.13)

Из (9.13) имеем

    (9.14)

при

    (9.15)

Уравнение (9.15) и есть уравнение неразрывности массы вещества в пласте при одномерном прямолинейном движении насыщающего его вещества. Чтобы получить такое уравнение для трехмерного случая, необходимо рассмотреть баланс массы в объемном элементе пласта (рис.9.9). Рассматривая массовые скорости поступления вещества в куб и вытеснения из него, а также накопленный объем его в кубе, получим:

    (9.16)

Уравнение (9.16) можно записать также в следующем общем виде:

    (9.17)

Уравнения (9.16), (9.17) - уравнения неразрывности массы вещества во время его движения при трехмерном измерении. Если в пласте одновременно движутся несколько веществ, находящихся как в газовой, так и в жидкой фазе, составляют уравнения неразрывности массы каждого вещества (компонента) в соответствующих фазах.

Уравнение энергии

Полная энергия единицы массы пласта состоит из отнесенных к единице массы внутренней удельной энергии пород пласта и насыщающих его веществ , удельной потенциальной z и кинетической энергии веществ, движущихся в пласте со скоростью . Поэтому:

(9.18)

Из закона сохранения энергии или, точнее, из первого начала термодинамики следует, что изменение энергии пласта и произведенной удельной работы равно количеству подведенного к пласту тепла , умноженного на механический эквивалент тепла , т.е.

(9.19)

или с учетом (9.18)

(9.20)

Дадим количественную оценку входящих в (9.20) величин. Удельная внутренняя энергия пласта при отсутствии в нем химических или ядерных превращений вещества представляет собой тепловую энергию в единице массы пласта, так что:

    (9.21)

где c - удельная теплоемкость пласта; Т - температура.

Положим, что пористый пласт насыщен водой. Тогда ( - удельная теплоемкость пород пласта; - удельная теплоемкость воды, - пористость). Пусть =1,046кДж/(кг×К), =4,184кДж/(кг·К), , . Тогда , =102×1,67×1=170 м. Удельная потенциальная энергия z в пластах может изменяться в соответствии с возможными изменениями уровня движущихся в пласте веществ. Обычно это десятки и иногда сотни метров.

,

где - плотность горных пород; - плотность насыщающих пласт веществ, и умножать все виды удельной энергии, кроме внутренней, на . При , , , .

Тогда для изменения удельной кинетической энергии получим

.

Из приведенной оценки следует, что удельной кинетической энергией движущихся в пласте веществ можно всегда, кроме особых случаев движения веществ в призабойной зоне скважин, пренебречь.

Если изменение удельной потенциальной энергии движущегося в пласте вещества составляет даже 100 м, то при умножении этой величины на получим 10 м. Изменение же температуры пласта всего на один градус равнозначно изменению удельной внутренней энергии почти на 200 м. Если разработка пласта ведется с использованием тепловых методов, то температура пласта может изменяться на сотни градусов и его удельная внутренняя энергия станет преобладающей среди других видов энергии. Оценим возможную величину работы, которую могут производить насыщающие пласт вещества. Удельную работу , производимую насыщающим пласт веществом и отнесенную к единице массы вещества, определим следующим образом:

    (9.22)

где - давление; - объем вещества, насыщающего пласт в элементарном объеме пласта; - плотность этого вещества; - ускорение свободного падения.

Поровый объем пласта остается, вообще говоря, неизменным, поскольку не изменяются геометрия пласта и его пористость. Работа вещества в пласте связана всегда с его расширением. Поэтому в (9.22) и введена величина , характеризующая расширение вещества. При этом условно можно считать, что вещество, насыщающее пласт, расширяясь, как бы выходит за пределы элементарного объема пласта. Будем считать, что при бесконечно малом расширении вещества в элементарном объеме пласта масса вещества остается неизменной.

Тогда и, следовательно,

  (9.23)

Подставляя (9.23) в (9.22) получим:

  (9.24)

Оценим возможную работу вещества, насыщающего пласт. Очевидно, что наибольшую работу может производить в пласте газ. Для простоты оценки будем считать газ идеальным, для которого , где и - давление и плотность газа при начальных условиях. Отсюда для идеального газа

    (9.25)

Пусть при снижении давления , , , ,

тогда

Сделанная оценка показывает, что работа вещества, насыщающего пласт, хотя и намного меньше, чем изменение удельной внутренней энергии при тепловых методах разработки нефтяных месторождений, все же при определенных условиях, как это показывает опыт, может быть значительной.

Рассмотрим вопрос о том, чему равняется входящая в (9.19) и (9.20) величина . Тепловыделение в элементе пласта может происходить за счет экзотермических химических реакций и гидравлического трения и за счет теплопроводности. Уход тепла из элемента пласта за счет теплопроводности в дальнейшем будем учитывать при изменении внутренней энергии пласта . Перенос тепла из пласта в кровлю и подошву будем учитывать соответствующими граничными условиями и поэтому в балансе энергии элементарного объема пласта его не будем принимать во внимание. Энергия движущегося в пористой среде вещества за счет гидравлического трения превращается в тепло. Для мощности гидравлического трения, отнесенной к единице массы движущегося вещества в элементе пласта, имеем следующее выражение

    (9.26)

Допустим, что в пласте движется газ вязкостью со скоростью . Проницаемость пласта мкм2,пористость , плотность газа при давлении МПа составляет 100 кг/м3. Тогда:

.

В сутки из килограмма движущегося в пласте газа будет выделяться м энергии. Это, конечно, незначительная величина. Однако, например, в призабойной зоне скважин скорость фильтрации того же газа может достигать м/с, а иногда и более. Тогда при тех же остальных условиях, что и выше, значение . В сутки из килограмма фильтрующегося в пласте газа выделится энергии почти 9кДж. Таким образом, можно заключить, что наиболее существенное изменение энергии в элементе пласта связано с переносом тепла за счет теплопроводности и конвекции. Определенный вклад в энергетический баланс пласта, особенно при высоких скоростях движения насыщающих его веществ, вносят работа расширения - сжатия веществ и гидравлическое трение.

Напишем уравнение сохранения энергии в пласте, учитывая теплопроводность и конвекцию, а также работу расширения - сжатия веществ и гидравлическое трение.

Рассматривая, как и при выводе уравнения неразрывности массы фильтрующегося в пласте вещества, поток внутренней энергии и энергии сжатия , а, также считая, что тепло поступает в элементарный объем только за счет гидравлического трения, т.е. что , получим:

    (9.27)

Здесь - вектор суммарной скорости теплопереноса в пласте за счет теплопроводности и конвекции, - вектор скорости фильтрации. Выражение (9.27) и есть дифференциальное уравнение сохранения энергии в пласте, выведенное при указанных выше предположениях.

 

Контрольные вопросы по теме 9

  1. Перечислите основные этапы геологического моделирования?
  2. Какие задачи решает 3Dмоделирование?
  3. Что представляет собой гидродинамическая модель?
  4. Что отражает детерминированная модель пласта?
  5. Что такое вероятностно-статистическая модель пласта?
  6. Что представляет собой модель однородного пласта?
  7. Что представляет собой модель пласта с двойной пористостью?
  8. Какой фундаментальный закон природы является основным приописании процессов разработки нефтяных месторождений?
  9. Какой фундаментальный закон природы необходимо учитывать при изменении температурных условий в пласте при разработке нефтяных месторождений?
  10. Какой физический закон часто используется для описания движения нефти в пласте?
  11. Назовите модель вытесненияпри движении перед фронтом вытеснения только нефти, а позади него –только воды?
  12. Назовите модель вытесненияпри движении перед фронтом вытеснения только нефти, а позади него - одновременно нефти и воды?



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-11-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: