Что такое дорожный просвет автомобиля.




ОПУТ 18 Техсредства автотранспорта.

Тема: Проходимость автомобиля.

Домашнее задание:

Изучить тему.

Составить краткий конспект.

3.Ответить на контрольные вопросы:

Что такое проходимость автомобиля.

Что такое профильная проходимость

Автомобиля.

Что такое дорожный просвет автомобиля.

Под проходимостью понимается способность автомобиля перевозить с высокой средней скоростью груз, пас­сажиров или специальное оборудова­ние в тяжелых дорожных или внедо­рожных условиях.

Проходимость ав­томобиля — комплексное свойство, характеризующее его подвижность и экономичность. Оно неразрывно свя­зано со способностью автомобиля наи­более эффективно выполнять транспортную работу в заданных дорожных условиях. По уровню проходимости автомо­били принято делить на три категории: ограниченной, повышенной и вы­сокой проходимости.

Основные определения

Автомобили ограничен­ной проходимости (дорожные автомобили) предназначены для эк­сплуатации на дорогах с твердым покрытием и грунтовых дорогах в су­хое время года. При использовании дополнительных средств (цепи проти­воскольжения, арочные шины) они мо­гут работать и в более сложных усло­виях. Сюда относятся неполноприводные автомобили типа 4X2, 6X2, 6×4, 8X4.

Автомобили повышенной проходимости конструктивно незначительно отличаются от дорож­ных. Как правило, такие автомобили создаются на базе дорожных, а повы­шение проходимости обеспечивается приводом на все колеса, постановкой дополнительной раздаточной короб­ки, использованием шин с пониженным или регулируемым давлением воздуха. В некоторых случаях устанавливают блокируемые дифференциалы или дифференциалы повышенного трения, ле­бедки и другие приспособления для преодоления препятствий.

Автомобили высокой проходимости создаются специально для работы в условиях бездо­рожья, они должны обладать способ­ностью преодолевать встречающиеся на местности препятствия: канавы, вертикальные уступы, подъемы и др. В отдельную группу по проходимо­сти выделяются специальные автомобили. Они создаются для эксплуатации в определенных услови­ях: Крайнего Севера, на заболоченной или песчаной местности и др. Такие автомобили имеют особую компоновку и, как правило, специальные типы движителей.

Автомобиль или автопоезд может потерять подвижность вследствие: за­девания выступающими частями за не­ровности дорожной поверхности, опа­сности опрокидывания или невозмож­ности преодоления подъемов или из-за недостаточной окружной силы на веду­щих колесах для преодоления сопро­тивления движению на поверхностях со слабой несущей способностью.

В соответствии с этим различают препятствия, обусловленные профилем местности и вызванные слабой несу­щей способностью опорной поверхности. Способность автомобиля преодо­левать названные препятствия оцени­вается профильной и опорно-сцепной проходимостью. На труднопроходимых маршрутах встречаются те и другие виды препятствий. Поэтому проходи­мость автомобиля в целом зависит от его профильной и опорно-сцепной про­ходимости.

Профильная проходимость

Профильная проходимость зависит от компоновки автомобиля и оценива­ется геометрическими параметрами проходимости, которые определяют по компоновочным чертежам или путем измерения натурных образцов. Все из­мерения проводятся при полной на­грузке автомобиля на горизонтальной площадке с твердым и ровным покры­тием.

Дорожный просвет — расстояние от опорной поверхности до наиболее низкой точки автомобиля, расположенной между колесами. Обычно это точки под картерами глав­ных передач ведущих мостов и в ме­стах расположения рессор. В техниче­ских характеристиках автомобилей мо­гут приводиться несколько значений дорожного просвета. Например, до­рожный просвет под передним и задним мостами. У современных легковых автомобилей дорожный про­свет составляет 150…220 мм, автобу­сов — 220…300 мм, а у грузовых автомобилей ограниченной и повышенной проходимости — 240…300 мм. В нор­мативах СЭВ рекомендуется для гру­зовых автомобилей обеспечивать до­рожный просвет не менее 270 мм. У автомобилей высокой проходимости за счет применения колесных передач и крупноразмерных шин дорожный просвет достигает 400…500 мм. Передним и задним углами свеса ограничива­ется проходимость автомобиля при проезде через канавы, пороги, крутые переломы. Углы свеса — это углы ме­жду плоскостью опорной поверхности и плоскостью, касающейся колес и наиболее выступающей точки автомо­биля. Большие углы свеса обеспечива­ют возможность преодоления, автомо­билем крутых препятствий, не задевая их. Наибольшие углы свеса имеют ав­томобили высокой проходимости: передний 60…70° и задний 50…60°.

Продольный радиус про­ходимости — радиус услов­ной цилиндрической неровности, через которую автомобиль может проехать, не задевая ее наинизшей точкой, рас­положенной в его средней части. В некоторых случаях для оценки проходимости автомобилей через пре­пятствия соизмеримые с колеей авто­мобиля, используют понятие попе­речный радиус проходимо­сти. Способность автомобиля приспо­сабливаться к неровностям местности без потери контакта колес с дорогой зависит от возможных углов перекоса мостов. Угол перекоса находится как сумма углов перекоса переднего и заднего мостов относительно горизон­тальной плоскости. У авто­мобилей, имеющих ведущие мосты, ко­торые сгруппированы в балансирную тележку, определяют также возмож­ные углы перекоса мостов тележки. Способность автопоезда двигаться по пересеченной местности оценивает­ся углами гибкости в вертикальной плоскости. По существующим нормативам угол гибкости g у автопо­езда с двухосным прицепом должен быть не менее ±62°, а у седельного автопоезда — ±8°. Способность автомобиля или авто­поезда маневрировать в ограниченном пространстве характеризуется мини­мальным радиусом поворота и шири­ной габаритного коридора поворота. Для автопоездов дополнительно определя­ют углы гибкости в горизонтальной плоскости. Они должны быть не ме­нее 55° у автопоездов с двухосными прицепами и 90° — у седельных авто­поездов. Профильная проходимость автомо­билей в значительной мере определя­ется их способностью преодолевать от­дельные препятствия.

Максимальный подъем, который автомобиль может преодолеть, зависит от окружной силы, развиваемой веду­щими колесами, и от угла его продоль­ной устойчивости — угла между пло­скостью, нормальной к опорной по­верхности и проходящей через центр масс, и плоскостью, проходящей через центр масс и точки контакта задних колес с дорогой. Этот угол определяет возможность опрокидывания автомо­биля относительно задней оси. У авто­мобилей обычной компоновки он все­гда больше угла максимального подъ­ема, преодолеваемого ими, и поэтому опрокидывание относительно задней оси оказывается практически невоз­можным. Только для автомобилей спе­циальной компоновки с очень высоким расположением центра масс следует анализировать устойчивость при пре­одолении максимальных подъемов.

Максимальная окружная сила, разви­ваемая ведущими колесами автомоби­ля, как правило, ограничена сцеплени­ем ведущих колес с опорной по­верхностью. Иногда у дорожных автомобильных поездов она ограничи­вается вследствие недостаточного кру­тящего момента, передаваемого через трансмиссию к ведущим колесам. Найдем максимальный угол подъема, преодо­леваемого автопоездом с тягачом 4X2, при условии, что его значение ограничено сцеплением ведущих колес с опорной поверхностью. Примем, что сцепление под обоими колесами моста одинаково.

Автомобили и автопоезда способны преодолевать подъемы по твердым склонам следующей кру­тизны: автопоезда с неполноприводными тягачами — 11…13°; одиночные неполноприводные автомобили — 20…25; автопоезда с полноприводными тяга­чами — 15…20; полноприводные оди­ночные автомобили — 27…35°. Нормативными документами опре­делено, что автомобильные поезда должны преодолевать подъемы с твер­дой опорной поверхностью крутизной не менее 18 % (10,2°), а одиночные автомобили — 25 % (14°). Спуск опасен тем, что на нем воз­можно опрокидывание автомобиля от­носительно передних колес. У автомо­билей обычной компоновки при равно­мерной скорости движения потеря устойчивости вследствие опрокидыва­ния может произойти лишь на спусках крутизной более 45°. Если же автомо­биль на спуске встречает препятствие, возникает инерционная сила, направ­ление которой совпадает с направле­нием движения автомобиля. В силу увеличения опрокидывающего момента вероятность опрокидывания возраста­ет. Аналогичные явления происходят при резком торможении на спуске. Опрокидывание автомобиля может произойти также и в конце спуска, ко­гда сопротивление движению в момент перехода с наклонного участка на го­ризонтальный резко возрастает. При опрокидывании автомобиля в рассмат­риваемых условиях затрачивается энергия на подъем центра масс за счет кинетической энергии автомобиля. По­этому для уменьшения вероятности опрокидывания скорость спуска не должна быть большой. Расчеты пока­зывают, что для автомобилей обычной компоновки при предельных углах спуска до 30° скорость движения во из­бежание опрокидывания не должна превышать 10 км/ч.

Возможность преодоления рва определяется числом и расположением мостов, размером колес и положением центра масс автомобиля по базе. Для двухосных и трехосных автомобилей (если центр масс расположен не над средним мостом), ширина преодолеваемого рва зависит от размеров колес. Испытания показывают, что такие ав­томобили способны преодолеть ров с прочными кромками шириной до 1… 1,3 радиуса колеса (большие значения относятся к автомобилям со всеми ве­дущими колесами). Для трехосных автомобилей с рав­номерным расположением мостов и че­тырехосных ширина преодолеваемого рва может быть значительной и опре­деляется базой автомобиля, расстанов­кой колес и положением центра масс по длине.

Высота преодолеваемого ав­томобилем порогового препятствия зависит главным образом от размера колеса и жесткости кромки порога. Максимальная высота преодо­леваемого неполноприводными автомо­билями порога составляет 0,3…0,5 ра­диуса колеса, а полноприводными — 0,5…0,8. Максимальная глубина преодоле­ваемого брода зависит от конструкции автомобиля. Лимитирующими эле­ментами при твердом основании брода являются уровни расположения лопа­стей вентилятора, всасывающего па­трубка, аккумулятора, генератора, си­стемы зажигания, воздухосоединительных отверстий картеров механизмов трансмиссии. Для увеличения глубины преодолеваемого брода у автомобилей повышенной и высокой проходимости выходы всасывающих и выхлопных па­трубков стремятся расположить высо­ко, вентилятор изготовляют с отклю­чающимся приводом, а генератор, систему зажигания, картеры мостов и колесные тормоза — герметичными. При таком конструктивном выполне­нии автомобили могут преодолевать брод глубиной до 1,6…1,8 м.

Опорно-сцепная проходимость Опорно-сцепная проходимость авто­мобиля зависит от эффективности ис­пользования несущих свойств грунта и определяется главным образом конст­рукцией движителя и трансмиссии автомобиля. Опорно-сцепная проходи­мость зависит также от формы корпу­са, типа подвески, удельной мощности автомобиля и др. Грунты и снег относятся к диспер­сным средам, основным отличием ко­торых от сплошных является то, что находящиеся в них твердые частицы не образуют сплошной массы, а зани­мают лишь часть объема. При этом прочность связи между отдельными ча­стицами значительно меньше прочно­сти материала этих частиц. При дей­ствии внешней нагрузки происходят перемещения, сдвиги отдельных твер­дых частиц относительно друг друга. По составу различают минераль­ные грунты и грунты органического происхождения. Минеральные грунты подразделяются на ряд категорий. В основу такого деления положены размеры и соотношение частиц двух фракций: глинистой и песчаной. Клас­сификация по этим признакам назы­вается гранулометрической. В зависи­мости от относительного содержания глинистых и песчаных фракций минеральные грунты делятся на глины (со­держание глинистых частиц по массе более 30%), суглинистые грунты — (10…30%), супесчаные (3…10 %) и песчаные (менее 3 %). Грунты, состоящие из отложений частиц органического вещества, зани­мают особое место. К ним относятся различные виды торфяно-болотных и илистых грунтов, которые различают­ся по влажности, составу и происхож­дению. Механические свойства грунтов в большой степени зависят от их влаж­ности. При незначительном увлажне­нии связных грунтов вода находится в них в виде тонких пленок или запол­няет тончайшие волосяные промежут­ки между частицами. В таком состоя­нии она малоподвижна, слабо испа­ряется и способствует повышению связности грунта. С повышением содержания воды заполняются более крупные поры грунта и увеличивается толщина водя­ных пленок на его частицах. Превыше­ние определенных пределов влажно­сти, характерных для каждого грунта.

Опорно-сцепная проходимость

Основными параметрами шин, опре­деляющими характер их взаимодей­ствия с опорной поверхностью, явля­ются наружный диаметр и форма по­перечного сечения шины. Шины в за­висимости от отношения ширины про­филя к его высоте делят на четыре типа: тороидные, широ­копрофильные, арочные, пневмокатки. Тороидные шины с нерегулируемым давлением устанавливают обычно на дорожных автомобилях. Радиальная деформация их под номинальной на­грузкой не превышает 12… 15 % высоты профиля. Поэтому опорная площадь небольшая и соответственно давление относительно высокое. Рисунок протек­тора, как правило, дорожный, мелкий. Такие шины на деформируемых грун­тах не обеспечивают высокой проходи­мости автомобиля. В настоящее время изготовляют то­роидные шины, способные работать при переменном давлении (шины с ре­гулируемым давлением). Эти шины, установленные на автомобилях повы­шенной проходимости, обеспечивают их движение по грунтам со слабой несу­щей способностью. Широкопрофильные шины первона­чально создавались как специальные шины для автомобилей повышенной и высокой проходимости. При нормаль­ном давлении воздуха опорная пло­щадь у широкопрофильных шин на 30…35 % больше, чем у тороидных та­кой же грузоподъемности. При пони­жении давления опорная площадь увеличивается более чем в два раза. Ри­сунок протектора характерен для шин высокой проходимости. В последнее время широкопрофильные шины при­меняются также и для дорожных лег­ковых и грузовых автомобилей. Такие шины работают при постоянном давле­нии воздуха в них. Рисунок протекто­ра — дорожный. Арочные шины имеют профиль в виде арки и сильно разви­тые грунтозацепы. Работают при по­стоянном давлении воздуха 0,05…0,15 МПа. Это позволяет обеспечить отно­сительно низкое давление на грунт и хорошее сцепление колес. Скорость движения автомобилей по твердым до­рогам ограничена. Такие шины применяют в основном как средство для по­вышения проходимости автомобилей в определенные сезоны года, устанав­ливая их вместо сдвоенных колес. Пневмокатки — спе­циальные шины, имеющие тонкую резинокордную оболочку и работающие при малом внутреннем давлении воз­духа (0,02…0,1 МПа). Применяются только на специальных машинах, пред­назначенных для движения в особо трудных условиях. Наиболее труднопроходимые для автомобиля грунтовые и заснеженные поверхности в первом приближении мо­гут быть сведены к четырем видам, различным по физико-механическим свойствам и характеру взаимодействия с движителем: переувлажненный грунт, болото, сухой песок, снег. Движение по переувлажненному грунту сопровождается образованием колеи, глубина которой оказывает не­посредственное влияние на сопротивле­ние качению. Из формулы следу­ет, что глубина колеи зависит от диа­метра колеса, ширины профиля и нагрузки на колесо. Этими парамет­рами определяется среднее давление колеса на грунт. Если бы шина была абсолютно эластичной, давление коле­са на грунт определялось бы давлением воздуха в шине. Поскольку часть нагрузки передается через каркас шины, давление на грунт зависит от соотно­шения жесткости шины и грунта. Если жесткость шины больше, чем жесткость грунта, она будет погружать­ся в грунт не деформируясь, т. е. пнев­матическая шина будет работать как жесткое колесо. Если же жесткость шины меньше жесткости грунта, шина деформируется. Это приведет к увели­чению поверхности контакта шины с грунтом, уменьшению на него давления и сопротивления качению. На дефор­мируемых грунтах площадь опорной поверхности может быть увеличена за счет увеличения ширины шины и ее диаметра и уменьшения давления воз­духа в ней. Наиболее предпочтитель­ным является увеличение диаметра ко­леса и снижение внутреннего давления в шине, так как с увеличением ее ши­рины растет объем деформируемого грунта и тем самым увеличивается сопротивление качению. Поскольку при уменьшении давления воздуха в шине площадь контакта растет в большей степени по длине, для повышения про­ходимости автомобиля целесообразно применять шины, давление воздуха в которых можно уменьшаться.

 



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-06-09 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: