Взаимное расположение плоскостей.




· Условие параллельности плоскостей

Две плоскости параллельны, когда две взаимно пересекающиеся прямые одной плоскости соответственно параллельны двум взаимно пересекающимся прямым другой плоскости.

 

 

· Пересечение прямой с плоскостью

Для построения точки пересечения прямой с плоскостью общего положения (Рисунок 3.13), необходимо:

  1. Заключить прямую а во вспомогательную плоскость β (в качестве вспомогательной плоскости следует выбирать плоскости частного положения);
  2. Найти линию пересечения вспомогательной плоскости β с заданной плоскостью α;
  3. Найти точку пересечения заданной прямой а с линией пересечения плоскостей MN.

Рисунок 3.13 – Построение точки встречи прямой с плоскостью

Упражнение

Заданы: прямая АВ общего положения, плоскость σ⊥π1. (Рисунок 3.14). Построить точку пересечения прямой АВ с плоскостью σ.

Решение:

  1. Плоскость σ – горизонтально-проецирующая, следовательно, горизонтальной проекцией плоскости σ является прямая σ1 (горизонтальный след плоскости);
  2. Точка К должна принадлежать прямой АВК 1А 1 В 1 и заданной плоскости σ ⇒ К 1∈σ1, следовательно, К 1 находится в точке пересечения проекций А 1 В 1 и σ1;
  3. Фронтальную проекцию точки К находим посредством линии проекционной связи: К 2А 2 В 2.

 

Рисунок 3.14 – Пересечение прямой общего положения с плоскостью частного положения

Упражнение

Заданы: плоскость σ = Δ АВС – общего положения, прямая EF (Рисунок 3.15).

Требуется построить точку пересечения прямой EF с плоскостью σ.

 
а б

 

Рисунок 3.15 – Пересечение прямой с плоскостью

Решение:

  1. Заключим прямую EF во вспомогательную плоскость, в качестве которой воспользуемся горизонтально-проецирующей плоскостью α (Рисунок 3.15, а);
  2. Если α⊥π1, то на плоскость проекций π1 плоскость α проецируется в прямую (горизонтальный след плоскости απ1 или α1), совпадающую с E 1 F 1;
  3. Найдём прямую пересечения (1-2) проецирующей плоскости α с плоскостью σ (решение подобной задачи будет рассмотрено ниже);
  4. Прямая (1-2) и заданная прямая EF лежат в одной плоскости α и пересекаются в точке K.

· Параллельность прямой плоскости

Признак параллельности прямой плоскости: прямая параллельна плоскости, если она параллельна какой-либо прямой, принадлежащей этой плоскости.

· Перпендикулярность прямой плоскости

Признак перпендикулярности прямой плоскости: прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости.

· Определение видимости методом конкурирующих точек:

См. рисунки

· Способ перемены плоскостей проекции.

См. рисунки

· Способ вращения.

См. рисунки

Конические сечения

Взаимное пересечение поверхностей (см. гайды)

Развертка поверхностей


Развертка пирамиды: см. рисунок

Развертка конуса:

 

 

Развертка цилиндра: поверхность цилиндра состоит из двух равных кругов радиуса R и прямоугольника, ширина которого равна высоте цилиндра, длина вычисляется по формуле С=2пR

 


 

Аксонометрия

Прямоугольная изометрия Прямоугольная диметрия(0.5у)

Косоугольные проекции

· Фронтальная изометрическая проекция

 

 

Горизонтальная изометрическая проекция

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-09-06 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: