Объекты и методы биотехнологии. Растительные, животные и бактериальные клетки как объекты биотехнологии. Генная и клеточная инженерия.




Лекция 1.

Предмет и задачи биотехнологии, основные этапы развития науки. Связь биотехнологии с биологическими, химическими, техническими и другими науками. Отрасли биотехнологии и их роль. Новые направления в биотехнологии. Продукты биотехнологического производства.

Рекомендуемая литература 1. Биотехнология: В 8 т. / Под ред. Н. С. Егорова и В. Д. Самуилова. М.: Высш. шк., 1987. 2. Воробьева Л. И. Промышленная микробиология. М.: Изд-во Моск. ун-та, 1989. 3. Глик Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение. М.: Мир, 2002. 4. Сельскохозяйственная биотехнология. Под ред. В.С. Шевелухи – 2-е изд., перераб. и доп. М.: Высш. шк., 2003.

В настоящее время современная биология включает казалось бы совершенно не связанные между собой разделы научных знаний: микробиологию, анатомию растений и животных, биохимию, иммунологию, клеточную биологию, физиологию растений и животных, различные систематики, экологию, генетику, биофизику, математику и много других областей естествознания. Постоянно увеличивающееся разнообразие современной биологии сделали возможным описание жизненных процессов на уровне клетки и молекулярных взаимодействий. Именно существенные успехи в фундаментальных исследованиях в области биохимии, молекулярной генетики и молекулярной биологии, достигнутые во второй половине 20-го столетия, создали предпосылки управления различными механизмами жизнедеятельности клетки. Сложившаяся благоприятная ситуация в биологии явилась мощным толчком в развитии современной биотехнологии, весьма важной области практического приложения результатов фундаментальных наук. Основой, обеспечивающей благоприятную ситуацию для бурного развития биотехнологии, явились революционизирующие открытия и разработки:

• доказательства роли нуклеиновых кислот в хранении и передаче наследственной информации в биологических системах (имеются в виду индивидуальные клетки и отдельные организмы, а не их популяции);

• расшифровка универсального для всех живых организмов генетического кода;

• раскрытие механизмов регуляции функционирования генов в процессе жизни одного поколения организмов;

• совершенствование существовавших и разработка новых технологий культивирования микроорганизмов, клеток растений и животных;

• создание (возникновение) и бурное развитие методов генетической и клеточной инженерии, с помощью которых искусственно создаются новые высокопродуктивные формы организмов, пригодные для использования в промышленных масштабах.

Абсолютно новым направлением является так называемая инженерная энзимология, возникшая вследствие развития современных методов изучения структуры и синтеза белков-ферментов и выяснения механизмов функционирования и регуляции активности этих соединений. Достижения в этой области позволяют направленно модифицировать белки различной сложности и специфичности функционирования, разрабатывать создание мощных катализаторов промышленно ценных реакций с помощью высоко стабилизированных иммобилизованных ферментов. Все эти достижения вывели биотехнологию на новый уровень ее развития, позволяющий сознательно и целенаправленно управлять сложными клеточными процессами.

Биотехнология является самой модной наукой последних десятилетий. Ее обороты быстро растут, но еще быстрее растут ожидания, что отражается в объемах инвестиций и количестве биотехнологических фирм.

Биотехнологические процессы человек начал использовать в глубокой древности для получения и сохранения пищи. В основе приготовления хлеба, кисломолочных продуктов, пива, вина, уксуса, получения некоторых красок, лежат биотехнологические процессы, чаще всего, протекающие с участием микроорганизмов. Фактически, и все сельскохозяйственное производство можно отнести к биотехнологии.

Термин «биотехнология» был введен в 1917 г. (1919 г. в других источниках) венгерским инженером Карлом Эреки при описании процесса крупномасштабного выращивания свиней с использованием в качестве корма сахарной свеклы. По определению Эреки, биотехнология – это «все виды работ, при которых из сырьевых материалов с помощью живых организмов производятся те или иные продукты».

До 1970-х гг. биотехнологическими называли производства, в которых применялись микроорганизмы (от промышленного пивоварения до выпуска антибиотиков).

В 1984 г. после долгих дебатов члены Европейской Ассоциации согласились с тем, что биотехнология – это научно-техническое направление, изучающее возможности использования биотехнологических процессов в технике и промышленном производстве.

Термин биотехнология включает составляющие «биос», «техне», «логос» (от греч. «биос» – жизнь, «техне» – искусство, мастерство, умение и «логос» – понятие, учение). Таким образом, биотехнология по существу сводится к использованию микроорганизмов, животных и растительных клеток или же их ферментов для синтеза, разрушения или трансформации различных материалов с целью получения полезных продуктов для различных нужд человека. Биотехнологические направления имеют своей целью создание и практическое внедрение:

• новых биологически активных веществ и лекарственных препаратов, используемых в здравоохранении для диагностики, профилактики и лечения различных заболеваний;

• биологических средств защиты сельскохозяйственных растений от возбудителей заболеваний и вредителей, бактериальных удобрений и регуляторов роста растений и животных; новых сортов растений, устойчивых к разного рода неблагоприятным воздействиям (факторам внешней среды); новых пород животных с полезными свойствами (трансгенные животные);

• ценных кормовых добавок для повышения продуктивности сельскохозяйственных животных (кормового белка, аминокислот, витаминов, ферментов, способствующих повышению усвояемости кормов, и т. п.);

• новых биоинженерных методов для получения высокоэффективных препаратов различного назначения, используемых в сельском хозяйстве и ветеринарии;

• новых технологий создания и получения хозяйственно ценных продуктов для пищевой, химической и микробиологической промышленности;

• эффективных технологий переработки сельскохозяйственных, промышленных и бытовых отходов для получения продуктов, которые могут использоваться в других отраслях хозяйственной деятельности человека (например, биогаза, удобрений, топлива для автомобилей и т. п.).

Само собой разумеется, что такие комплексные задачи требуют интеграции различных отраслей научных и технических знаний и характеризуют биотехнологию как ряд перспективных технологий, которые найдут применение в самых разнообразных индустриальных направлениях.

То есть биотехнология – междисциплинарная область научно-технического прогресса, возникшая на стыке биологических, химических и технических знаний и призванная к созданию новых биотехнологических процессов, которые в большинстве случаев будут осуществляться при низких температурах, требовать небольшого количества энергии и будут базироваться преимущественно на дешевых субстратах, используемых в качестве первичного сырья. Однако биотехнология не является чем-то новым, ранее не известным, а есть развитие и расширение набора технологических приемов, корни которых появились тысячи лет тому назад.

Обратимся к «основным этапам биотехнологического процесса», определенных Карлом Эреки.

1. исходная обработка: обработка сырья таким образом, чтобы его можно было использовать как источник питательных веществ для микроорганизма-мишени.

2. ферментация и биотрансформация: рост микроорганизма-мишени в большом (обычно более 100 литров) биореакторе (ферментация) с последующим образованием нужного метаболита, например антибиотика, аминокислоты или белка (биотрансформация).

3. конечная обработка: очистка нужного вещества от компонентов культурной среды или от клеточной массы.

Наиболее трудным для оптимизации является этап биотрансформации. Когда использовались природные микробные штаммы, выход конечного продукта часто оказывался небольшим. Поэтому предпринимались попытки изменить штаммы-продуценты с помощью химического мутагенеза или ультрафиолетового облучения. При таком подходе уровень повышения продукции обычно лимитировался чисто биологическими факторами. Например, если мутантный штамм синтезировал слишком много того или иного вещества, часто это отрицательно влияло на прочие метаболические процессы и приводило к угнетению роста культуры при крупномасштабном культивировании. Несмотря на это традиционные стратегии «индуцированного мутагенеза и селекции», направленные на усовершенствования штамма-продуцента, были довольно плодотворны для многих процессов, например, для производства антибиотиков.

Традиционные схемы генетического усовершенствования бактерий включают скрининг, отбор и тестирование огромного количества колоний, поэтому такие схемы высокозатратны и занимают много времени. И все же к концу 70х годов таким образом были усовершенствованы производственные процессы получения целого ряда продуктов. О современных объемах биотехнологического производства можно судить, исходя из того, что в мире производится более 1011 литров пива.

Если говорить об этапах развития биотехнологии, то до последней трети 19 века длился первый эмпирический этап (6 тыс. л. до н.э. - 1856 г.), при котором главную роль играл многовековой опыт биотехнологического производства.

В конце XIX века, благодаря трудам Пастера, были созданы предпосылки для развития микробиологии, что также сказалось и на прогрессе биотехнологии. Пастер установил, что микробы играют основную роль в процессах брожения и показал, что в образовании отдельных продуктов участвуют их конкретные виды.

Его исследования позволили оптимизировать процессы получения вина, пива и послужили основой развития в конце XIX и начале XX века бродильного производства органических растворителей (ацетона, этанола, бутанола) и других химических веществ, где использовались микроорганизмы, осуществлявшие превращения углеводов в процессе брожения. Были предприняты первые попытки наладить производство пищевых концентратов из дрожжей. Благодаря открытиям Пастера, Коха и Беринга, сделанных в конце 19 века начала развиваться разработка и производство вакцин и сывороток для предупреждения инфекционных заболеваний человека и животных.

В 19 веке было также установлено, что вместо живых организмов можно использовать продукты их жизнедеятельности – ферменты.

В 1891 году японский биохимик Такамине получил первый патент в США на использование ферментных препаратов в промышленных целях: учёный предложил применить диастазу для осахаривания растительных отходов.

Важным этапом в развитии биотехнологии получения ценных веществ была организация промышленного производства антибиотиков, а именно по промышленному получению пенициллина (1940 г).

Нельзя не сказать об использовании микроорганизмов для минерализации различных отходов. Процесс минерализации органических отбросов, основанный на использовании активного ила был разработан в 1914 г. С тех пор он был существенно модернизирован и используется во всём мире для переработки стоков. При современной переработке стоков в анаэробных условиях смешанной микрофлоры, попутно получают биогаз (состоит, в основном, из метана и углекислого газа), что позволяет сохранить и концентрировать энергию, содержащуюся в различных отходах. С помощью этого процесса можно получать значительную часть необходимой энергии.

После второй мировой войны появились новые направления в биотехнологии.

В сельском хозяйстве – новые методы селекции растений и животных (включая клонирование).

В химическом производстве – получение органических кислот (например, лимонной), ферментов для моющих средств.

В энергетике - крупномасштабное производство этанола как жидкого топлива.

В пищевой промышленности - создание новых методов переработки и хранение пищевых продуктов, получение пищевых добавок, аминокислот, использование белка, синтезированного одноклеточными организмами и ферментов при переработке пищевого сырья. В мире с помощью микробиологического синтеза производится более 150 тыс. тонн глутамата натрия и 15 тыс. тонн лизина.

Микроорганизмы стали использоваться в получении металлов, путем выщелачивания руд.

В медицине – стали применять лечебные ферменты, стероиды, новые антибиотики.

Целью биотехнологических исследований является максимальное повышение эффективности каждого из этапов биотехнологического производства и поиск микроорганизмов, с помощью которых можно получить нужные вещества.

В настоящее время идет этап молекулярно-биотехнологической революции. Формально началом можно считать 15 октября 1980 г., когда фирма Genentech впервые предложила обществу свои акции, это была не большая компания в Калифорнии, в течение 4 лет успешно работавшая над проблемой получения рекомбинантных ДНК. Ученым компании удалось выделить фрагменты гена (последовательности ДНК), кодирующие человеческий инсулин, и перенести их в генетические элементы (клонирующие векторы), способные реплицироваться в клетках обычной кишечной палочки (E. coli). Эти бактериальные клетки работали как биологические фабрики по производству человеческого инсулина, который после соответствующей очистки мог использоваться как лекарственный препарат для больных диабетом, дающих аллергическую реакцию на свиной инсулин.

Сейчас молекулярная биотехнология пользуется достижениями самых разных областей науки и применяет их для создания самых разных коммерческих продуктов. В целом, ее биотехнологическая составляющая относится к сфере промышленной микробиологии и химической инженерии, а молекулярная – к областям молекулярной биологии, молекулярной генетики бактерий и энзимологии нуклеиновых кислот.

Конечной целью всех биотехнологических исследований является создание коммерческого продукта. И хотя, в целом, доходность биотехнологического бизнеса оказалась не такой высокой, как ожидалось, энтузиазм инвесторов не ослабевает.

Сейчас с молекулярной биотехнологией человечество связывает самые большие надежды: возможность точной диагностики, профилактики и лечения множества инфекционных и генетических заболеваний, значительное повышение урожайности сельскохозяйственных культур путем создания.

Лекция 2

Объекты и методы биотехнологии. Растительные, животные и бактериальные клетки как объекты биотехнологии. Генная и клеточная инженерия.

Рождение биотехнологии обусловлено потребностями общества в новых, более дешевых продуктах для народного хозяйства, в том числе для медицины и ветеринарии, а также принципиально новых технологиях. В качестве биологических объектов чаще всего используются одноклеточные микроорганизмы, животные и растительные клетки, а также организм животных, человека или растений. Выбор этих объектов обусловлен следующими причинами:

Клетки являются своего рода биофабриками, вырабатывающими в процессе жизнедеятельности разнообразные ценные продукты: белки, жиры, углеводы, витамины, аминокислоты, антибиотики, гормоны, антитела, антигены, ферменты, спирты и т.д. Многие из этих продуктов, крайне необходимых в жизни человека, пока недоступны для получения небиотехнологическими способами.

Клетки чрезвычайно быстро воспроизводятся. Так, бактериальная клетка делится через каждые 20-60 мин, дрожжевая - через 1,5-2 ч, животная - через 24 ч, что позволяет за относительно короткое время искусственно нарастить на сравнительно дешевых и недефицитных питательных средах в промышленных масштабах огромные количества биомассы микробных, животных или растительных клеток.

Биосинтез сложных веществ, таких, как белки, антибиотики, антигены, антитела, значительно экономичнее и технологически доступнее, чем другие виды химического синтеза. При этом исходное сырье для биосинтеза, как правило, проще, дешевле и доступнее, чем сырье для других видов синтеза. Для этого используются отходы сельскохозяйственной, рыбной продукции, пищевой промышленности, растительное сырье, например рыбная мука, меласса, дрожжи, древесина и др.

Биотехнология использует следующие продукты одноклеточных:

• сами клетки как источник целевого продукта;

• крупные молекулы, которые синтезируются клетками в процессе выращивания, ферменты, токсины, антигены, антитела и др.;

• первичные метаболиты - низкомолекулярные вещества (мол. масса менее 1500 Д), необходимые для роста клеток - аминокислоты, витамины, нуклеотиды, органические кислоты и др.;

• вторичные метаболиты (идиолиты) - низкомолекулярные и макромолекулярные соединения, не требующиеся для роста клеток, - антибиотики, алкалоиды, токсины, гормоны и др.

Биотехнология использует эту продукцию клеток как сырье, которое в результате технологической обработки превращается в конечный, пригодный для использования продукт.

Помимо микроорганизмов, животных и растительных клеток, биотехнология в качестве биологических объектов использует органы и ткани человека и животных, растения, организм животных и человека. Например, для получения инсулина используется поджелудочная железа крупного рогатого скота и свиней, гормона роста - гипофизы трупов человека, иммуноглобулинов - организм лошадей и других животных, препаратов крови - кровь доноров и т.д.

Биотехнология, используя перечисленные выше биологические объекты, получает огромный ассортимент продукции, применяемой в медицине, ветеринарии, сельском хозяйстве, пищевой и химической промышленности, других отраслях народного хозяйства. К ним относятся продукты, без которых немыслимо существование современного человека: антибиотики, витамины, ферменты, вакцины, гормоны, аминокислоты, нуклеотиды, комплемент (сыворотка крови) и препараты крови, иммуномодуляторы, антитела, диагностические препараты, сердечно-сосудистые, противоопухолевые и множество других фармацевтических препаратов, пищевые и кормовые белки, биологические средства защиты растений, инсектициды, сахара, спирты, липиды, дрожжи, кислоты, бутанол, ацетон и др.

Помимо этого биотехнология играет большую роль в оздоровлении окружающей среды: с помощью биотехнологических процессов проводят очистку от загрязняющих веществ почвы, водоемов, воздушной среды путем их биоконверсии и биодеградации.

Однако биотехнология не ограничивается получением только вышеперечисленных продуктов. Значительные, более масштабные и революционные проблемы она решает на пути создания трансгенных животных и растений, т.е. создания новых, ранее неизвестных пород животных и растений, а также клонирования животных. Новейший раздел биотехнологии - генная и белковая инженерия - позволяет получать совершенно уникальные биотехнологические эффекты, открывать способы диагностики, профилактики и лечения врожденных болезней, влиять на свойства генома человека, животных и растений.

Микроорганизмы и процессы, применяемые в биотехнологии. На Земле существует около 100 тыс. видов бактерий, не считая многочисленных грибов (250 тыс. видов), вирусов, простейших. Микробы способны синтезировать продукты или осуществлять реакции, полезные для биотехнологии. Однако в практике используют не более 100 видов микроорганизмов, так как остальные мало изучены.

Так, например, дрожжи используют в хлебопечении, пивоварении, виноделии, получении соков, кормового белка, питательных сред для выращивания бактерий и культур животных клеток.

Из бактерий в биотехнологии чаще всего используют род Acetobacter - для превращения этанола в уксусную кислоту, углекислый газ и воду; род Bacillus - для получения ферментов (B. subtilis), средств защиты растений (B. thuringiensis); род Clostridium - для сбраживания сахаров в ацетон, этанол, бутанол; молочнокислые бактерии (Lactobacillus и др.) и др.

Из грибов в биотехнологии для получения разнообразных антибиотиков применяют род Streptomyces, Penicilium chrysogenium, Cefalosporum acremonium, Streptomyces spp. и др.

Широкое применение в получении диагностикумов, вакцин, иммуноглобулинов, пробиотиков, фагов и других микробных препаратов находят патогенные и вакцинные штаммы болезнетворных микробов, а также условно-патогенные микроорганизмы.

Многие микроорганизмы - бактерии, дрожжи, вирусы - используются в качестве реципиентов чужеродного генетического материала с целью получения рекомбинантных штаммов - продуцентов биотехнологической продукции. Так получены рекомбинантные штаммы E. coli, продуцирующие интерфероны, инсулин, гормоны роста, разнообразные антигены; штаммы B. subtilis, вырабатывающие интерферон; дрожжи, продуцирующие антигены вируса гепатита В; рекомбинантные вирусы осповакцины, синтезирующие антигены вируса гепатита В, вируса клещевого энцефалита, ВИЧ и др.

Генетическая инженерия является сердцевиной биотехнологии. Она по существу сводится к генетической рекомбинации, т.е. обмену генами между двумя хромосомами, которая приводит к возникновению клеток или организмов с двумя и более наследственными детерминантами (генами), по которым родители различались между собой. Метод рекомбинации in vitro или генетической инженерии заключается в выделении или синтезе ДНК из отличающихся друг от друга организмов или клеток, получении гибридных молекул ДНК, введении рекомбинантных (гибридных) молекул в живые клетки, создании условий для экспрессии и секреции продуктов, кодируемых генами.

Гены, кодирующие те или иные структуры, или выделяют (клонируют) как таковые (хромосомы, плазмиды), или прицельно выщепляют из этих генетических образований с помощью ферментов рестрикции. Эти ферменты, а их уже известно более тысячи, способны резать ДНК по многим определенным связям, что является важным инструментом генной инженерии.

В последнее время обнаружены ферменты, расщепляющие по определенным связям РНК, наподобие рестриктаз ДНК. Эти ферменты названы рибозимами.

Сравнительно небольшие гены могут быть получены с помощью химического синтеза. Для этого вначале расшифровывают число и последовательность аминокислот в белковой молекуле вещества, а затем по этим данным узнают очередность нуклеотидов в гене, поскольку каждой аминокислоте соответствуют три нуклеотида (кодон). С помощью синтезатора создают химическим путем ген, аналогичный природному гену.

Полученный одним из способов целевой ген с помощью ферментов лигаз сшивают с другим геном, который используется в качестве вектора, для встраивания гибридного гена в клетку. Вектором могут служить бактериофаги, вирусы человека, животных и растений. Экспрессируемый ген в виде рекомбинатной ДНК (фаг, вирусная ДНК) встраивается в бактериальную или животную клетку, которая приобретает новое свойство - продуцировать несвойственное этой клетке вещество, кодируемое экспрессируемым геном. В качестве реципиентов экспрессируемого гена чаще всего используют E. coli, B. subtilis, псевдомонады (бактерии), дрожжи, вирусы.

Методом генной инженерии созданы сотни препаратов медицинского и ветеринарного назначения, получены рекомбинантные штаммы-суперпродуценты, многие из которых нашли практическое применение. Уже используются в медицине полученные методом генной инженерии вакцины против гепатита В, интерлейкины-1, 2, 3, 6, инсулин, гормоны роста, интерфероны α, β, γ (антибиотики для определенного вируса действуют одинаково), фактор некроза опухолей, пептиды тимуса, миелопептиды, тканевый активатор плазминогена, антигены ВИЧ, фактор свертывания крови и многие антигены для диагностических целей.


 

Лекция 3



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: