Биотехнологическую промышленность иногда разделяют на четыре направления:
§ «Красная» биотехнология — производство биофармацевтических препаратов (протеинов, ферментов, антител) для человека, а также коррекция генетического кода.
§ «Зелёная» биотехнология — разработка и внедрение в культуру генетически модифицированных растений.
§ «Белая» биотехнология — производство биотоплив, ферментов и биоматериалов для различных отраслей промышленности.
§ Академические и правительственные исследования — например, расшифровка генома риса.
Микробиологическая индустрия выпускает 150 видов продукции, крайне необходимой народному хозяйству. Её гордость — кормовой белок, получаемый на основе выращивания дрожжей. В год его производят более 1 млн. тонн. Другое важное достижение — выпуск ценнейшей кормовой добавки — незаменимой аминокислоты лизина. Усвояемость белковых веществ, содержащихся в продукции микробиологического синтеза, такова, что 1 т кормового белка экономит 5-8 т зерна. Добавка 1 т биомассы дрожжей в рацион птиц, например, позволяет получить дополнительно 1,5-2 т мяса или 25-35 тыс. яиц, а в свиноводстве — высвободить 5-7 т фуражного зёрна. Дрожжи — не единственный возможный источник белка. Он может быть получен путём выращивания микроскопических зелёных водорослей, различных простейших и других микроорганизмов. Уже разработаны технологии их использования, проектируются и строятся предприятия-гиганты мощностью от 50 до 300 тыс. тонн продукции в год. Их эксплуатация позволит внести весомый вклад в решение народно-хозяйственных задач.
Если ген человека, отвечающий за синтез какого-либо фермента или другого важного для организма вещества, пересадить в клетки микроорганизмов, то в соответствующих условиях микроорганизмы будут продуцировать чуждое им соединение в промышленных масштабах. Учёные разработали и внедрили в производство способ получения интерферона человека эффективного при лечении многих вирусных заболеваний. Из 1 л культуральной жидкости извлекают такое же количество интерферона, какое раньше получали из многих тонн донорской крови.
|
Другой пример — получение с помощью микроорганизмов гормона роста человека. Совместные разработки учёных Института молекулярной биологии, Института молекулярной биологии, Института биохимии и физиологии микроорганизмов России и институтов России позволяют производить уже граммы гормона, тогда как прежде этот препарат получали миллиграммами. В настоящее время препарат проходит испытания. Методы генетической инженерии создали возможность получения вакцин против таких опасных инфекций, как гепатит В, ящур крупного рогатого скота, а также разработки способов ранней диагностики ряда наследственных заболеваний и различных вирусных инфекций.
Генетическая инженерия начинает активно воздействовать на развитие не только медицины, но и других сфер народного хозяйства. Успешное развитие методов генетической инженерии открывает широкие возможности для решения ряда задач, стоящих перед сельским хозяйством. Это и создание новых ценных сортов сельскохозяйственных растений, устойчивых к различным заболеваниям и неблагоприятным факторам внешней среды, и ускорение процесса селекции при выведении высокопродуктивных пород животных, и создание для ветеринарии высокоэффективных средств диагностики и вакцин, и разработка методов биологической фиксации азота. Решение этих проблем будет способствовать научно-техническому прогрессу сельского хозяйства, и ключевая роль в этом будет принадлежать методам генетической и клеточной инженерии.
|
Клеточная инженерия — необычайно перспективное направление современной биотехнологии. Учёные разработали методы выращивания в искусственных условиях клеток растений животных и даже человека. Культивирование клеток позволяет получать различные ценные продукты, ранее добываемые в очень ограниченном количестве из-за отсутствия источников сырья. Особенно успешно развивается клеточная инженерия растений. Используя методы генетики, удается отбирать линии таких клеток растений — продуцентов важных веществ, которые способны расти на простых питательных средах и в то же время накапливать ценных продуктов в несколько раз больше, чем само растение. Выращивание массы клеток растений уже используется в промышленных масштабах для получения физиологически активных соединений. Налажено, например, производство биомассы женьшеня для нужд парфюмерной и медицинской промышленности. Закладываются основы производства биомассы лекарственных растений, разрабатываются способы выращивания клеточной массы других редких растений — продуцентов ценных веществ (родиолы розовой и др.).
Другое важное направление клеточной инженерии — клональное микроразмножение растений на основе культуры тканей. Основан этот метод на удивительном свойстве растений: из отдельной клетки или кусочка ткани в определенных условиях может вырасти целое растение, способное к нормальному росту и размножению. Этим методом из небольшой части растения можно получить до 1 млн. растений в год. Клональное микроразмножение используется для оздоровления и быстрого размножения редких, хозяйственно ценных или вновь созданных сортов сельскохозяйственных культур. Таким путем из клеток, не зараженных вирусами, получают здоровые растения картофеля, винограда, сахарной свеклы, садовой земляники, малины и многих других культур. В настоящее время разработаны методы микроразмножения и более сложных объектов — древесных растений (яблони, ели, сосны). На основе этих методов будут созданы технологии промышленного получения исходного посадочного материала ценных древесных пород. Методы клеточной инженерии позволят значительно ускорить селекционный процесс при выведении новых сортов хлебных злаков и других важных сельскохозяйственных культур: срок их получения сокращается до 3-4 лет (вместо 10-12 лет, необходимых при использовании обычных методов селекции). Перспективным способом выведения новых сортов ценных сельскохозяйственных культур является принципиально новый метод слияния клеток. Этот метод позволяет получать гибриды, которые не могут быть созданы обычным путем скрещивания в силу барьера межвидовой несовместимости. Методом слияния клеток получены, например, гибриды различных видов картофеля, томатов, табака; табака и картофеля, рапса и турнепса, табака и белладонны. На основе гибрида культурного и дикого картофеля, который устойчив к вирусам и другим заболеваниям, создаются новые сорта. Аналогичным способом получают ценный селекционный материал томатов и других культур. В перспективе — комплексное использование методов генетической и клеточной инженерии для создания новых сортов растений с заранее заданными свойствами, например, со сконструированными в них системами фиксации атмосферного азота. Большие успехи достигнуты клеточной инженерией в области иммунологии: разработаны методы получения особых гибридных клеток, производящих индивидуальные, или моноклональные, антитела. Это позволило создать высокочувствительные средства диагностики ряда тяжелых заболеваний человека, животных и растений.
|
Значительный вклад вносит современная биотехнология в решение такой важной проблемы, как борьба с вирусными заболеваниями сельскохозяйственных культур, наносящими большой ущерб народному хозяйству. Ученые разработали высокоспецифичные сыворотки для выявления более 20 вирусов, вызывающих заболевания различных сельскохозяйственных культур. Разработана и изготовлена система приборов и приспособлений для массовой автоматической экспресс-диагностики вирусных болезней растений в условиях сельскохозяйственного производства. Новые методы диагностики позволяют отбирать для посадки свободный от вирусов исходный материал (семена, клубни и др.), что способствует значительному повышению урожая. Важное практическое значение имеют работы по инженерной энзимологии. Первым важным успехом её была иммобилизация ферментов — закрепление молекул ферментов с помощью прочных химических связей на синтетических полимерах, полисахаридах и других носителях-матрицах. Закрепленные ферменты более стабильны, их можно использовать многократно. Иммобилизация позволяет осуществлять непрерывные каталитические процессы, получать продукцию, не загрязненную ферментом (что особенно важно в ряде пищевых и фармакологических производств), значительно снизить ее себестоимость. Этот метод применяют для получения антибиотиков. Так, учеными разработана и внедрена в промышленное производство технология получения антибиотиков на основе иммобилизованного фермента пенициллинамидазы. В результате применения этой технологии в пять раз снизился расход сырья, себестоимость конечного продукта уменьшилась почти вдвое, объем производства возрос в семь раз. Следующим шагом инженерной энзимологии была разработка методов иммобилизации клеток микроорганизмов, а затем — клеток растений и животных. Иммобилизованные клетки являются наиболее экономичными биокатализаторами, так как обладают высокой активностью и стабильностью, а главное — применение их полностью исключает затраты на выделение и очистку ферментов. В настоящее время на основе иммобилизованных клеток разработаны методы получения органических кислот, аминокислот, антибиотиков, стероидов, спиртов и других ценных продуктов. Иммобилизованные клетки микроорганизмов используются также для очистки сточных вод, переработки сельскохозяйственных и промышленных отходов. Биотехнология находит все более широкое применение и во многих отраслях промышленного производства: разработаны методы использования микроорганизмов для извлечения цветных благородных металлов из руд и промышленных отходов, для повышения нефтеотдачи пластов, для борьбы с метаном в угольных шахтах. Так, для освобождения шахт от метана учёные предложили бурить скважины в угольных пластах и подавать в них суспензию из метаноокисляющихся бактерий. Таким образом удается удалить около 60% метана ещё до начала эксплуатации пласта. А недавно нашли более простой и эффективный способ: суспензией из бактерий опрыскивают породы выработанного пространства, откуда наиболее интенсивно выделяется газ. Разбрызгивание суспензии можно осуществлять с помощью специальных форсунок, устанавливаемых на крепях. Испытания, которые были проведены на шахтах Донбасса, показали, что бактерии быстро уничтожают от 50 до 80 % опасного газа в выработках. А вот с помощью других бактерий, которые сами выделяют метан, можно повышать давление в нефтяных пластах и обеспечивать более полное извлечение нефти. Значительный вклад предстоит внести биотехнологии и в решение энергетической проблемы. Ограниченность запасов нефти и газа заставляет искать пути использования нетрадиционных источников энергии. Один из таких путей — биоконверсия растительного сырья, или, другими словами, ферментативная переработка целлюлозосодержащих отходов промышленности и сельского хозяйства. В результате биоконверсии можно получить глюкозу, а из неё — спирт, который и будет служить топливом. Все шире развёртываются исследования по получению биогаза (в основном метана) путем переработки животноводческих, промышленных и коммунальных отходов с помощью микроорганизмов. При этом остатки после переработки являются высокоэффективным органическим удобрением. Таким образом, этим путем решаются сразу несколько проблем: охрана окружающей среды от загрязнений, получение энергии и производство удобрений. Установки по получению биогаза уже работают в разных странах.
Возможности биотехнологии практически безграничны. И в недалеком будущем еще более возрастет практическая значимость биотехнологии в решении важнейших задач селекции, медицины, энергетики, охраны окружающей среды от загрязнений.
Трансгенные растения — это те растения, которым пересажены гены.
§ 1. Картофель устойчивый к колорадскому жуку, был создан путем введения гена выделенного из ДНК клетки почвенной тюрингской бациллы, вырабатывающий белок, ядовитый для колорадского жука (в желудке жука вырабатывается яд, а в человеке нет). Использовали посредника — клетки кишечной палочки. Листья картофеля стали вырабатывать белок, ядовитый для жуков.
§ 2. Используют продукты из трансгенной сои, кукурузы, картофеля и подсолнечника.
§ 3. В Америке решили вырастить помидор устойчивый к заморозкам. Взяли ген камбалы, отвечающий за терморегуляцию, и пересадили в клетки томата. Но помидор эту информацию понял по-своему, он не перестал бояться заморозков, а перестал портиться при хранении. Он может полгода лежать в комнате и не гнить.
Трансгенные животные, экспериментально полученные животные, содержащие во всех клетках своего организма дополнительную интегрированную с хромосомами и экспрессирующуюся чужеродную ДНК (трансген), которая передается по наследству по законам Менделя.
Изредка трансген может реплицироваться и передаваться по наследству как экстрахромосомный автономно реплицирующийся фрагмент ДНК. Термин «трансгеноз» был предложен в 1973 г. для обозначения переноса генов одних организмов в клетки организмов других видов, в том числе далеких в эволюционном отношении. Получение трансгенных животных осуществляется с помощью переноса клонированных генов (ДНК) в ядра оплодотворенных яйцеклеток (зигот) или эмбриональных стволовых (плюрипотентных) клеток. Затем в репродуктивные органы реципиентной самки пересаживают модифицированные зиготы или яйцеклетки, у которых собственное ядро заменено на модифицированное ядро эмбриональных стволовых клеток, либо бластоцисты (эмбрионы), содержащие чужеродную ДНК эмбриональных стволовых клеток. Имеются отдельные сообщения об использовании спермиев для создания трансгенных животных, однако этот прием пока не получил широкого распространения.
В последние годы в результате появления технологии клонирования животных возникли дополнительные возможности для создания трансгенных животных. Уже есть трансгенные животные, полученные с помощью микроинъекции генов в ядра дифференциированных клеток.
Все имеющиеся методы переноса генов пока еще не очень эффективны. Для получения одного трансгенного животного в среднем необходимы микроинъекции ДНК в 40 зигот мышей, 90 зигот козы, 100 зигот свиньи, 110 зигот овцы и в 1600 зигот коровы. Механизмы интеграции экзогенной ДНК или формирования автономных репликонов (единиц репликации, отличных от хромосом) при трансгенозе не известны. Встраивание трансгенов у каждого вновь получаемого трансгенного животного происходит в случайные участки хромосом, причем может происходить встраивание как единичной копии трансгена, так и множества копий, располагающихся, как правило, тандемно в единичном локусе одной из хромосом. Как правило, гомология между сайтом (местом) интеграции трансгена и самим трансгеном отсутствует. При использовании для трансгеноза эмбриональных стволовых клеток возможна предварительная селекция, что позволяет получать трансгенных животных с трансгеном, интегрированным в результате гомологичной рекомбинации с определенным участком генома хозяйского организма. С помощью этого подхода осуществляют, в частности, целенаправленное прекращение экспрессии определенного гена (это называют «нокаутом гена»).
Технология создания трансгенных животных является одной из наиболее бурно развивающихся биотехнологий в последние 10 лет. Трансгенные животные широко используются как для решения большого числа теоретических задач, так и в практических целях для биомедицины и сельского хозяйства. Некоторые научные проблемы не могли бы быть решены без создания трансгенных животных. На модели трансгенных лабораторных животных проводятся широкие исследования по изучению функции различных генов, регуляции их экспрессии, фенотипическому проявлению генов, инсерционному мутагенезу и др. Трансгенные животные важны для различных биомедицинских исследований. Существует множество трансгенных животных, моделирующих различные заболевания человека (рак, атеросклероз, ожирение и др.). Так, получение трансгенных свиней с измененной экспрессией генов, определяющих отторжение органов, позволит использовать этих животных для ксенотрансплантации (пересадки органов свиньи человеку). В практических целях трансгенные животные используются различными зарубежными фирмами как коммерческие биореакторы, обеспечивающие производство разнообразных медицинских препаратов (антибиотиков, факторов свертываемости крови и др.). Кроме того, перенос новых генов позволяет получать трансгенных животных, отличающихся повышенными продуктивными свойствами (например, усиление роста шерсти у овец, понижение содержания жировой ткани у свиней, изменение свойств молока) или устойчивостью к различным заболеваниям, вызываемым вирусами и другими патогенами. В настоящее время человечество уже использует множество продуктов, получаемых с помощью трансгенных животных: медицинские препараты, органы, пища.