Функции нескольких переменных, дифференцированных исчислений




До сих пор рассматривались функции одной переменной х. В случае зависимости параметров какого-то процесса или явления от многих факторов вводится понятие функции нескольких переменных.

Пусть каждому набору значений n переменных величин из множества M, называемых независимыми переменными, по какому-либо закону ставится в соответствие некоторое число z, называемое зависимой переменной. Тогда говорят, что задана функция нескольких переменных .

 

z   y O x M   Рис. 3 Функция одной переменной изображается на плоскости в виде линии. В случае двух переменных область определения M функции представляет собой некоторое множество точек на координатной плоскости Оxy и тогда графиком функции является некоторая поверхность (рис. 3).

Приведем примеры функций нескольких переменных.

1. Функция вида , где – постоянные числа, называется линейной или гиперплоскостью -мерном пространстве.

2. Функция вида , где – постоянные числа, называется квадратичной формой от переменных .

При рассмотрении функций в n-мерном пространстве широко используется геометрический язык, хотя буквальное понимание геометрических терминов возможно только при п = 2 и п = 3.

Далее для наглядности будем рассматривать функции двух переменных (), хотя практически все понятия и теоремы, сформулированные для , переносятся на случай . Основные понятия математического анализа, введенные для функции одной переменной, переносятся на случай двух переменных. Так, число А называется пределом функции в точке , если для любого числа можно найти число такое, что для всех точек из d-окрестности точки М выполняется неравенство . Для обозначения предела функции в точке используется символика

.

Окрестностью точки называется круг, содержащий точку М.

В случае функции двух переменных аргумент может стремиться к предельной точке по различным направлениям на плоскости, поэтому следует говорить о пределах функции в точке вдоль определенных линий.

Функция называется непрерывной в точке , если предел функции в этой точке существует и равен значению функции в этой точке, т. е. . Геометрический смысл непрерывности функции при очевиден: график функции представляет собой в точке непрерывности сплошную поверхность в некоторой окрестности этой точки.

Пример. Найти экстремум функции двух переменных z = x2 + y2, x Î [-20, 20], y Î [-10, 10].

 

Решение.

Необходимое условие экстремума = 2х = 0, = 2у = 0, откуда координаты стационарной точки (хст, уст) = (0, 0).

Вторые производные А = = 2; В = = 0; С = = 2. Так как AC - B2 = 4 > 0, то в точке (0, 0)  локальный минимум.

Значение функции в точке минимума z (0, 0) = 0.

Список литературы

Выгодский М.Я. Справочник по высшей математике. - М.: Джангар, 2000. - 864 с.

Гордон В.А., Шмаркова Л.И. Краткий курс математики / Учебное пособие. – Орёл: ОрёлГТУ, 2000. – 96 с.

Демидович Б.П. Сборник задач и упражнений по математическому анализу: М.: Наука, 1972.

Для подготовки данной работы были использованы материалы с сайта https://ref.com.ua



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-04-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: