Понятие «система», свойства, иллюстрация на примерах.




Вопросы по курсу

«Теория систем»

Понятие «система» не имеет, а по мнению некоторых авторов, и не может иметь исчерпывающего и однозначного определения. Это связано с первичностью, аксиоматическим характером понятия, поскольку понятие «системность» очень часто носит субъективный характер и оценивается через другие понятия, которые также являются первичными.

Блез Паскаль писал: «Я считаю, что познать части без знания целого так же невозможно, как познать целое без знания его частей».

Теория систем изучает общие проблемы связи целого и его частей. В более узком понимании это вопросы, связанные с решением следующих проблем:

- определение содержания проблем;

- назначение и (или) определение целей при принятии решений;

- поиск путей решения проблем;

- проектирование и (или) построение систем для достижения целей и т.д.

Так что же будет пониматься под термином «система»? Достаточно устоявшейся является мысль, что «система» («S») обладает минимум четырьмя свойствами:

1) Целостность и членимость

Целостность означает, что система воспринимается окружающей средой как единый элемент этой среды. Членимость означает, что в системе можно выделить некоторые элементы, совокупность которых вместе с их взаимодействием и образует систему. При этом совокупность элементов обладает качественно новыми свойствами, которые позволяют рассматривать их как элемент более сложной системы. Новое качество, эмерджентность, - это то, что определяет «лицо» системы, идентифицирует ее целостность, и поэтому оно первично для системы.

2) Интегративные качества

Свойства, обеспечивающие целостность, которые есть у системы, но нет у элементов, составляющих систему, называются интегративным качеством (ИК), они определяют эмерджентность. Существенно, что ИК не может быть выявлено сколь угодно глубоким изучением свойств элементов. Например, команда (бригада) может выполнить задачи, которые члены команды (бригады) по отдельности выполнить не в состоянии.

3) Связи (отношения)

Система, как правило, взаимодействует с другими системами (Fi, i=1,2,…), которые для нее являются внешней средой, связь осуществляется между некоторыми (или всеми) элементами, принадлежащими данной системе, и элементами других систем (см. рис. 1.1). Другие системы – это внешняя среда для системы S.

Если взаимодействие системы S с внешней средой не рассматривается (в теоретических исследованиях, например), тогда система называется закрытой или автономной. Множество переменных (координат), через которые система S взаимодействует с внешней средой, часто разделяют на подмножества входных X={xi, i=1,2…} и выходных Y={yj; j=1,2…} координат системы.

В реальном мире один и тот же элемент может входить в разные системы. Взаимодействие систем носит разноплановый характер, поэтому существенным вопросом является определение границ системы и выделение переменных Х,Y. Причем значение имеют только связи, определяющие интегративное качество, т.е. «имидж» системы.

Связь подсистем количественно задается множеством характеристик связей В={bi, i=1,2,…}, к числу которых относится физическое наполнение (энергетическая, информационная, вещественная, механическая связь и т.д.), а также мощностью, направленностью и т.д.

 
 

 


Рис. 1.1 - Графическое представление системы и среды

 

Формально связь может быть представлена отображением b:Х® при условии, что метрики множеств Х и связаны функцией f(b):

.

Метрика (мера, расстояние)– это способ измерения расстояния между элементами множеств а,b,сÎХ.

Метрика должна удовлетворять некоторым определяющим свойствам:

а) r ≥ 0 при любых а,b,c;

б) r(a,b) = 0 тогда и только тогда, когда a = b (аксиома идентичности);

в) r(a,b) = r(b,a) (аксиома симметричности);

г) r(a,b) £ r(а,с) + r(с,b) (аксиома треугольника).

Пара (Х,rХ) называется метрическим пространством.

Примеры метрик:

а) r(а,b) = |a - b|;

б) r2(a,b) = - евклидова метрика в евклидовом пространстве Rn,

в) r¥(а,b) = - чебышевская метрика;

г) rК(a,b) = - метрика Гельдера, К – целое.

В общем случае – отношения бывают: унарные (самого с собой); бинарные (между двумя элементами); тернарные (между тремя элементами); вообще, - n-арные.

4) Организация

Введем в рассмотрение понятие «состояние» элемента или системы.

Количество состояний (мощность множества состояний) может быть конечно, счетно (количество состояний измеряется дискретно, но их число бесконечно); мощности континуум (состояния изменяются непрерывно и число их бесконечно и несчетно).

Состояния можно описать через переменные состояния. Если переменные – дискретные, то количество состояний может быть либо конечным, либо счетным. Если переменные – аналоговые (непрерывные), тогда - мощности континуум.

Минимальное количество переменных, через которые может быть задано состояние, называется фазовым пространством. Изменение состояния системы отображается в фазовом пространстве фазовой траекторией.

Уравнение состояния системы:

Y = F(X, Z), (1.1)

где Z – переменные состояния (вектор аналоговых или дискретных величин),

Х – входные переменные, Y – выходные переменные системы.

Одной из наиболее часто используемых характеристик организации является энтропия (поворот, превращение – греч.).



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-05-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: