Клубеньковые бактерии бобовых культур




Данные палеонтологии свидетельствуют о том, что самыми древними бобовыми культурами, имевшими клубеньки, были некоторые растения, принадлежащие к группе Eucaesalpinioideae.

У современных видов бобовых растений клубеньки обнаружены на корнях многих представителей семейства Рарilijоnасеае.

Филогенетически более примитивные представители таких семейств, как Caesalpiniaceae Mimosaceae, в большинстве случаев клубеньков не образуют.

Из 13 000 видов (550 родов) бобовых растений наличие клубеньков выявлено пока только приблизительно у 1300 видов (243 рода). Сюда в первую очередь относятся виды растений, использующиеся в сельском хозяйстве (более 200).

Сформировав клубеньки, бобовые растения приобретают способность усваивать атмосферный азот. Однако они способны питаться и связанными формами азота - солями аммония и азотной кислоты. Лишь одно растение - копеечник (Hedysarum coronarium) - ассимилирует только молекулярный азот. Поэтому без клубеньков в природе это растение не встречается.

Клубеньковые бактерии снабжают бобовое растение азотом, который фиксируют из воздуха. Растения же, в свою очередь, поставляют бактериям продукты углеводного обмена и минеральные соли, необходимые им для роста и развития.

В 1866 г. известный ботаник и почвовед М.С. Воронин увидел в клубеньках на корнях бобовых растений мельчайшие «тельца». Воронин выдвинул смелые для того времени предположения: он связал образование клубеньков с деятельностью бактерий, а усиленное деление клеток ткани корня с реакцией растения на проникшие в корень бактерии.

20 лет спустя голландский ученый Бейеринк выделил из клубеньков гороха, вики, чины, фасоли, сераделлы и лядвенца бактерии и изучал их свойства, проверив способность заражать растения и вызывать образование клубеньков. Он назвал эти микроорганизмы Bacillus radicicola. Поскольку к роду Bacillus относятся бактерии, образующие споры, а клубеньковые бактерии лишены этой способности, А. Пражмовский переименовал их в Bacterium radicicola. Б. Франк предложил более удачное родовое название клубеньковых бактерий - Rhizobium (от греч. rhizo - корень, bio - жизнь; жизнь на корнях). Это название привилось и используется в литературе до сих пор.

Для обозначения вида клубеньковых бактерий принято к родовому названию Rhizobium добавлять термин, соответствующий латинскому названию того вида растения, из клубеньков которого они выделены и на котором могут образовывать клубеньки. Например, Rhizobium trifolii - клубеньковые бактерии клевера, Rhizobium lupini - клубеньковые бактерии люпина и т.д. В тех случаях, если клубеньковые бактерии способны образовывать клубеньки на корнях разных видов бобовых растений, т. е. вызывать так называемое перекрестное заражение, видовое название является как бы собирательным - в нем отражена именно эта «перекрестно заражающая» способность. Например, Rhizobium leguminosarum - клубеньковые бактерии гороха (Pisum), чечевицы (Lens), чины (Lathyrus).

Морфология и физиология клубеньковых бактерий-для клубеньковых бактерий характерно поразительное разнообразие форм - полиморфность. На это обращали внимание многие исследователи, изучая клубеньковые бактерии в чистой культуре в лабораторных условиях и почве. Клубеньковые бактерии могут быть палочковидными и овальными. Среди этих бактерий встречаются также фильтрующиеся формы, L-формы, кокковидные неподвижные и подвижные организмы.

Молодые клубеньковые бактерии в чистой культуре на питательных средах обычно имеют палочковидную форму, размер палочек примерно 0,5-0,9 X 1,2-3,0 мкм, подвижные, размножаются делением. У палочковидных клеток клубеньковых бактерий клевера наблюдается деление перешнуровыванием. С возрастом палочковидные клетки могут переходить к почкованию. По Граму клетки окрашиваются отрицательно, ультратонкая структура их типична для грамотрицательных бактерий.

При старении клубеньковые бактерии теряют подвижность и переходят в состояние так называемых опоясанных палочек. Такое название они получили вследствие чередования в клетках плотных и неплотных участков протоплазмы. Полосатость клеток хорошо выявляется при просмотре в световом микроскопе после обработки клеток анилиновыми красителями. Плотные участки протоплазмы (пояски) прокрашиваются хуже, чем промежутки между ними. В люминесцентном микроскопе пояски светло-зеленые, промежутки между ними не светятся и выглядят темными.Пояски могут располагаться в середине клетки или на концах. Опоясан-ность клеток видна и на электроннограммах, если препарат перед просмотром не обрабатывать контрастирующими веществами. Вероятно, с возрастом бактериальная клетка наполняется жировыми включениями, не воспринимающими окраску и вследствие этого обусловливающими исчерченность клетки. Стадия «опоясанных палочек» предшествует стадии формирования бактероидов - клеток неправильной формы: утолщенных, разветвленных, сферических, грушевидных и колбовидных.Термин «бактероиды» ввел в литературу Дж. Брунхорст в 1885 г., применив его к необычным по форме образованиям, значительно более крупным, чем палочковидные клетки бактерий, встречающимся в тканях клубеньков.

Бактероиды содержат большее количество волютиновых гранул и характеризуются более высоким содержанием гликогена и жира, чем палочковидные клетки. Бактероиды, выращенные в искусственных питательных средах и образовавшиеся в тканях клубенька, физиологически однотипны. Есть мнение, что бактероиды - это формы бактерий с незавершенным процессом деления. При незавершенном делении клеток клубеньковых бактерий возникают дихотомически ветвящиеся формы бактероидов. Количество бактероидов увеличивается при старении культуры; их появлению способствуют истощение питательной среды, накопление продуктов обмена, внесение в среду алкалоидов.

В старых (двухмесячных) культурах клубеньковых бактерий с помощью электронного микроскопа можно выявить во многих клетках четко очерченные образования сферической формы - артроспоры. Их количество в клетках варьирует от 1 до 5.

На питательных средах клубеньковые бактерии различных видов бобовых растений растут с разной скоростью. К быстрорастущим относятся клубеньковые бактерии гороха, клевера, люцерны, кормовых бобов, вики, чечевицы, чины, донника, пажитника, фасоли, нута, лядвенца; к медленнорастущим - клубеньковые бактерии люпина, сои, арахиса, сераделлы, маша, вигны, эспарцета, дрока. Вполне сформировавшиеся колонии быстрорастущих культур можно получить на 3 - 4-е сутки инкубации, колонии медленнорастущих - на 7 - 8-е.

Для быстрорастущих клубеньковых бактерий характерно перитрихиальное расположение жгутиков, для медленнорастущих - монотрихиальное.

Кроме жгутиков, у клеток клубеньковых бактерий при выращивании на жидких средах образуются нитевидные и четковидные выросты.Длина их достигает 8 -10 мкм. Они обычно располагаются на поверхности клетки перитрихиально, содержится их от 4 до 10 и больше на одну клетку.

Колонии быстрорастущих клубеньковых бактерий имеют цвет топленого молока, часто полупрозрачные, слизистые, с ровными краями, умеренно выпуклые, со временем разрастаются на поверхности агаризованной среды. Колонии медленнорастущих бактерий более выпуклые, мелкие, сухие, плотные и, как правило, не разрастающиеся на поверхности среды. Слизь, вырабатываемая клубеньковыми бактериями, представляет собой комплексное соединение полисахаридного типа, в состав которого входят гексозы, пентозы и уроновые кислоты.

Клубеньковые бактерии - микроаэрофилы (развиваются при незначительных количествах кислорода в среде), предпочитающие, однако, аэробные условия.

В качестве источника углерода в питательных средах клубеньковые бактерии используют углеводы и органические кислоты, в качестве источника азота - разнообразные минеральные и органические азотсодержащие соединения. При культивировании на средах с высоким содержанием азотсодержащих веществ клубеньковые бактерии могут утратить способность проникать в растение и образовывать клубеньки. Поэтому обычно клубеньковые бактерии выращивают на растительных экстрактах (фасолевом, гороховом отваре) или почвенных вытяжках. Необходимый для развития фосфор клубеньковые бактерии могут получать из минеральных и органических фосфорсодержащих соединений; источником кальция, калия и других минеральных элементов могут служить минеральные соединения.

Для подавления посторонней сапрофитной микрофлоры при выделении клубеньковых бактерий из клубеньков или непосредственно из почвы рекомендуются питательные среды с добавлением кристаллического фиолетового, танина или антибиотиков.

Для развития большинства культур клубеньковых бактерий требуется оптимальная температура в пределах 24-26°. При 0° и 37 °С рост приостанавливается. Обычно культуры клубеньковых бактерий в условиях лаборатории хранят при пониженных температурах (2-4 °С).

Многие виды клубеньковых бактерий способны синтезировать витамины группы В, а также ростовые вещества типа гетероауксина (бета-индолилуксусная кислота).

Все клубеньковые бактерии приблизительно одинаково устойчивы к щелочной реакции среды (рН = 8,0), но неодинаково чувствительны к кислой.

Специфичность, вирулентность, конкурентоспособность и активность клубеньковых бактерий-понятие специфичности клубеньковых бактерий - собирательное. Оно характеризует способность бактерий образовывать клубеньки у растений. Если говорить о клубеньковых бактериях вообще, то для них образование клубеньков только у группы бобовых растений уже само по себе специфично - они обладают избирательностью к бобовым растениям.

Однако если рассматривать отдельные культуры клубеньковых бактерий, то оказывается, что среди них есть такие, которые способны заражать лишь определенную, иногда большую, иногда меньшую, группу бобовых растений, и в этом смысле специфичность клубеньковых бактерий - это избирательная способность в отношении растения-хозяина. Специфичность клубеньковых бактерий может быть узкой (клубеньковые бактерии клевера заражают только группу клеверов - видовая специфичность, а клубеньковые бактерии люпина могут характеризоваться даже сортовой специфичностью - заражать только алкалоидные или безалкалоидные сорта люпина). При широкой специфичности клубеньковые бактерии гороха могут заражать растения гороха, чины, бобов, а клубеньковые бактерии чины и бобов могут заражать растения гороха, т. е. все они характеризуются способностью «перекрестного заражения». Специфичность клубеньковых бактерий лежит в основе их классификации.

Специфичность клубеньковых бактерий возникла в результате их длительного приспособления к одному растению или к группе их и генетической передачи этого свойства. В связи с этим различная приспособленность клубеньковых бактерий к растениям имеется и в пределах группы перекрестного заражения. Так, клубеньковые бактерии люцерны могут образовать клубеньки у донника. Но тем не менее они более приспособлены к люцерне, а бактерии донника - к доннику.

В процессе инфекции корневой системы бобовых растений клубеньковыми бактериями большое значение имеет вирулентность микроорганизмов. Если специфичностью определяется спектр действия бактерий, то вирулентность клубеньковых бактерий характеризует активность их действия в пределах данного спектра. Под вирулентностью подразумевается способность клубеньковых бактерий проникать в ткань корня, размножаться там и вызывать образование клубеньков.

Большую роль играет не только сама способность проникать в корни растения, но и скорость этого проникновения.

Для определения вирулентности штамма клубеньковых бактерий необходимо установить его способность вызывать образование клубеньков. Критерием вирулентности любого штамма может служить то минимальное количество бактерий, которое обеспечивает более энергичное инфицирование корней по сравнению с другими штаммами, завершающееся формированием клубеньков.

В почве в присутствии других штаммов не всегда более вирулентный штамм будет инфицировать растение первым. В этом случае следует учитывать его конкурентную способность, которая нередко маскирует свойство вирулентности в природных условиях.

Необходимо, чтобы вирулентные штаммы обладали и конкурентоспособностью, т. е. могли успешно конкурировать не только с представителями местной сапрофитной микрофлоры, но и с другими штаммами клубеньковых бактерий. Показателем конкурентоспособности штамма служит количество образованных им клубеньков в процентах от общего числа клубеньков на корнях растений.

Важным свойством клубеньковых бактерий является их активность (эффективность), т.е. способность в симбиозе с бобовыми растениями ассимилировать молекулярный азот и удовлетворять в нем потребности растения-хозяина. В зависимости от того, в какой степени клубеньковые бактерии способствуют повышению урожайности бобовых культур, их принято делить на активные (эффективные), малоактивные (малоэффективные) и неактивные (неэффективные).

Неактивный для одного растения-хозяина штамм бактерий в симбиозе с другим видом бобового растения может быть вполне эффективным. Поэтому при характеристике штамма с точки зрения его эффективности следует всегда указывать, в отношении какого вида растения-хозяина проявляется его действие.

Активность клубеньковых бактерий не является их постоянным свойством. Нередко в лабораторной практике наблюдается потеря активности у культур клубеньковых бактерий. При этом или теряется активность у всей культуры, или появляются отдельные клетки с малой активностью. Снижение степени активности клубеньковых бактерий происходит в присутствии некоторых антибиотиков, аминокислот. Одной из причин утраты активности клубеньковых бактерий может быть влияние фага. Пассированием, т. е. неоднократным проведением бактерий через растение-хозяина (адаптацией к определенному виду растения), можно получить эффективные штаммы из неэффективных.

Воздействие гамма-лучами дает возможность получать штаммы с усиленной эффективностью. Известны случаи возникновения высокоактивных радиомутантов клубеньковых бактерий люцерны из неактивного штамма. Применение ионизирующих излучений, оказывающих непосредственное влияние на изменение генетических особенностей клетки, по всей вероятности, может явиться перспективным приемом при селекции высокоактивных штаммов клубеньковых бактерий.

Инфицирование бобового растения клубеньковыми бактериями-для обеспечения нормального процесса инфицирования корневой системы клубеньковыми бактериями необходимо наличие довольно большого количества жизнеспособных клеток бактерий в прикорневой зоне.

При развитии корневой системы бобового растения размножение клубеньковых бактерий на поверхности корня стимулируется выделениями корня. Продукты разрушения корневых чехликов и волосков играют также немаловажную роль в обеспечении клубеньковых бактерий подходящим субстратом.

На поверхности корня имеется слой слизистого вещества (матрица), образующийся независимо от наличия в ризосфере бактерий. Этот слой хорошо виден при исследовании в светооптическом микроскопе. Клубеньковые бактерии после инокуляции обычно устремляются к этому слою и скапливаются в нем вследствие стимуля-ционного эффекта корня, проявляющегося даже на расстоянии до 30 мм.

О механизме проникновения клубеньковых бактерий в корень растения существует ряд гипотез. Наиболее интересные из них следующие. Авторы одной из гипотез утверждают, что клубеньковые бактерии проникают в корень через повреждения эпидер-мальной и коровой ткани (особенно в местах ответвления боковых корней). Эта гипотеза была выдвинута на основании исследований Бриля (1888), вызвавшего образование клубеньков у бобовых растений путем прокалывания корней иглой, погруженной предварительно в суспензию клубеньковых бактерий. Как частный случай такой путь внедрения вполне реален. Например, у арахиса клубеньки преимущественно располагаются в пазухах ответвлений корней, что наводит на мысль о проникновении клубеньковых бактерий в корень через разрывы при прорастании боковых корней.

Интересна и не лишена оснований гипотеза о проникновении клубеньковых бактерий в ткань корня через корневые волоски. Путь прохождения клубеньковых бактерий через корневые волоски признает большинство исследователей.

Не исключено, что клубеньковые бактерии могут проникать в корень через эпидермальные клетки молодых верхушек корня. По мнению Пражмовского (1889), бактерии могут проникать в корень только через молодую клеточную оболочку (корневых волосков или эпи-дермальных клеток) и совершенно не способны преодолевать химически измененный или оп-робковевший слой коры. Этим можно объяснить, что клубеньки обычно развиваются на молодых участках главного корня и появляющихся боковых корнях.

В последнее время большую популярность получила ауксинная гипотеза. Авторы этой гипотезы считают, что клубеньковые бактерии проникают в корень благодаря стимуляции синтеза р-индолилуксусной кислоты (гете-роауксина) из триптофана, имеющегося всегда в корневых выделениях растений. С наличием гетероауксина связывается искривление корневых волосков, которое обычно наблюдается при инфицировании корневой системы клубеньковыми бактериями.

 

 


Бактериальные удобрения

Стало известно, что симбиоз с азотфиксирующими микроорганизмами наблюдается не только у бобовых растений, но и у злаков, сложноцветных и др. Причем роль бактерий-симбионтов не ограничивается только фиксацией атмосферного азота, они еще и синтезируют физиологически активные вещества, стимулирующие рост и развитие растения-хозяина (ауксины, гиббереллины, витамины, антибиотики). Микроорганизмы участвуют в сложных биохимических процессах, протекающих в почве. Они являются основой получения бактериальных удобрений.

Исследователи искали пути заражения почвы клубеньковыми бактериями. Широко практикуемый прием заражения почвы землей с участков, где возделывались соответствующие бобовые растения, давал положительные результаты, но был связан с рядом затруднений. Поэтому исследования были направлены на изыскания возможностей применения клубеньковых бактерий в чистом виде. В 1897 году Ф. Ноббе и Л. Гильтнер выпустили бактериальный препарат нитрагин, представляющий собой культуру клубеньковых бактерий на желатине. Разведенным в воде препаратом обрабатывали семена бобовых. Впоследствии препараты нитрагина были предложены многими исследователями. Стали создавать лаборатории и заводы по производству бактериальных удобрений. В мировой практике сельского хозяйства используется несколько десятков разновидностей бактериальных удобрений, которые выпускаются в самых разнообразных формах. Наиболее удачна сухая отличающаяся простотой применения и хорошей транспортабельностью.

Производством бактериальных удобрений - инокулянтов - за рубежом занимаются свыше 30 фирм. Крупнейшие страны-производители - США и Австралия. В США шесть фирм ежегодно выпускают до 20 млн порций/га, обеспечивая свою потребность в этих препаратах и экспортируя избытки в Англию и страны Латинской Америки. Большое применение нашли препараты клубеньковых бактерий в странах СЭВ. Так, в Венгрии ежегодный выпуск инокулянтов составляет 80 тыс. порций/га. Эффективность на сое в среднем по стране высокая. В Румынии ежегодно производится около 250 тыс. порций/га для собственной потребности и экспорта в другие страны. Прибавка зерна от нитрагинизации сои - 10 ц/га, или 50%; фасоли - 2 … 3 ц/га, или 22 … 25%; гороха - 2 … 7 ц/га, или 11 … 35%.

Широкое применение в сельском хозяйстве нашел ризоторфин - наиболее эффективное бактериальное удобрение. Это чистая культура клубеньковых бактерий, поддерживаемых в активном состоянии на специально подготовленном торфяном материале-носителе (разработан ВНИИ сельскохозяйственной микробиологии в г. Пушкине под Ленинградом). По своей действенности он превосходит все зарубежные образцы. Усиливает образование клубеньков, улучшает азотное питание бобовых растений, повышает устойчивость их к заболеваниям, оказывает положительное влияние на плодородие и структуру почвы. Производство ризоторфина достигло свыше 4 млн порций/га. Это пылевидный порошок торфа, в котором размножены высокоэффективные штаммы клубеньковых бактерий. Применение ризоторфина высокоэффективно для всех бобовых культур, особенно для сои, люпина, люцерны. Средние прибавки составляют 9... 10 ц/га сена многолетних бобовых трав, 2... 3 и/га зерна и 30... 60 ц/га зеленой массы гороха и люпина. В новых районах возделывания сои применение ризоторфина повышает урожайность семян на 6 ц/га. Ризоторфин не только способствует росту урожая, но и улучшает его качество - повышает содержание протеина. Так, дополнительный сбор протеина составляет для сои 160... 540 кг, гороха - 50... 220, люпина - 240... 300, люцерны - 200... 300 кг с каждого гектара.

Большой интерес вызывает недавно открытое явление так называемой ассоциативной азотфиксации, когда бактерии живут не в клубеньках бобовых культур, а на поверхности корней, в том числе таких важнейших растений, как злаковые (пшеница, рис, кукуруза, рожь, сорго, просо), многие кормовые травы, технические и другие культуры. Процесс азотфиксации у небобовых растений идет хотя и слабее, тем не менее имеет важное значение, так как этими растениями засеваются огромные площади. По данным Всесоюзного института растениеводства, урожай тимофеевки, картофеля, кормового сорго возрастал на 15% при внесении ассоциативных азотфиксаторов. Эти микроорганизмы обладают комплексом полезных свойств. Кроме фиксации азота воздуха, они продуцируют ростовые вещества, повышают коэффициент использования азота минеральных удобрений, положительно влияют на репродуктивные органы растений.

Одним из основных условий эффективности бактериальных удобрений является подбор для их производства штаммов, способных к высокой азотфиксации в различных экстремальных условиях. В нашей стране создана коллекция из 500 отобранных штаммов. В ней представлены штаммы клубеньковых бактерий всех бобовых культур, полученные в основном методом аналитической селекции. Коллекция находится во ВНИИСХ микробиологии, где выделены и испытаны эффективные штаммы ассоциативных азотфиксаторов. О большом признании коллекции свидетельствуют включение 150 штаммов в Международный каталог. Коллекция Rhizobium есть в Дании, 536 штаммов насчитывает одна из крупнейших в мире коллекций Великобритании, хранящаяся на Ротамстедской опытной станции. Станция поставляет высокоэффективные штаммы клубеньковых бактерий во многие страны мира. Получению эффективных штаммов большое внимание уделяет ФАО.

В дальнейшей селекционной работе с азотфиксирующими микроорганизмами необходимо учитывать, что основные симбиотические свойства клубеньковых бактерий заключены в особых структурах - плазмидах, способных переходить из клеток одних видов бактерий в клетки других. Открываются широкие возможности для генной инженерии, переноса плазмид в другие почвенные микроорганизмы и на этой основе конструировать штаммы с заранее заданными полезными свойствами.

 


Заключение

Клубеньковые бактерии используются для промышленного производства нитрагина, применяемого для обработки семян бобовых растений. Они впервые обнаружены М.С. Ворониным в 1866 г. Позже М.В. Бейеринком (1888) они были выделены в чистой культуре и подробно изучены микробиологами и физиологами. Бактерии попадают в корни бобовых растений через корневой волосок и проникают во внутренние покровы корня, в паренхиму, вызывая усиленное деление и разрастание клеток. На корнях образуются уродливые наросты, называемые желваками, или клубеньками. Вначале бактерии усваивают питательные вещества растения и несколько тормозят его рост. Затем по мере разрастания ткани клубенька между бактериями и высшими растениями устанавливается симбиоз. Бактерии получают от растения углеродистую пищу (сахара) и минеральные вещества, а взамен предоставляют ему азотистые соединения.

Клубеньковые бактерии поселяются в почве, размножаются и через отверстия в корневых волосках бобовых растений проникают в корневые клетки. В клетках происходит усиленное размножение клубеньковых бактерий и параллельно идет интенсивное деление корневых клеток, инфицированных клубеньковыми бактериями.

Клубеньковые бактерии снабжают бобовое растение азотом. Растение использует этот связанный азот и в свою очередь доставляет клубеньковым бактериям необходимые им углеродсодержащие органические вещества. В качестве источника углерода клубеньковые бактерии могут использовать различные сахара, спирты.

Помимо клубеньковых бактерий, в почве живут и другие микроорганизмы, способные усваивать свободный азот воздуха; они обитают не на корнях растений, а вблизи них. Все остальные питательные вещества, необходимые этим микробам, они усваивают самостоятельно, а не за счет соков растения, как это присуще клубеньковым растениям. Важнейшим из живущих в почве микроорганизмов, способных усваивать азот атмосферы, является азотобактер. Эти бактерии могут жить при благоприятных условиях влажности, хорошем притоке воздуха, подходящих температуре и кислотности почвы. Требования азотобактера к тепловому режиму и влажности почвы примерно такие же, как и требования культурных растений, но к кислотности почвы он чувствительнее, чем большинство растений.

 

Список используемой литературы

1. Бекинг Дж.Х. «Семья Азотобактерас» 1992 г. - 401 с.

2. Гусев М.В., Минеева Л.А. «Микробиология» 4-е изд., стер. - М.: Академия, 2003 г. - 315 с.

3. «Введение в биохимию растений» Т. Гудвин, Э. Мерсер. М.: Мир, 1986 г. - 312 с.

4. Шлегель Г. «Общая микробиология» - М.: «Мир», 1987 г. - 425 с.

5. К. Сальман и Г. Фэреус «Клубеньковые бактерии бобовых» 1987 г. - 403 с.

6. Д. Гудчильд и Ф. Бергерсен «Жизнь растений: Азотфиксирующие бактерии» 1995 г. - 317 с.

7. Ф.Ф. Юхимчук «Азотный обмен и возрастные изменения бобовых растений» 1993 г. - 357 с.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-09-06 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: