Крупнейшие полости отдельных континентов




Наиболее богата крупнейшими полостями всех типов Европа (20 шт.); затем следуют Азия (14) и Северная Америка (12); Африка и Австралия (по 10); замыкает список Южная Америка (9). "Пустые места" в таблице 3 обязательно заполнятся в ближайшие годы. По количеству крупных полостей своего континента на первом месте США (11 шт.), затем следуют Алжир, Бразилия, Исландия, Италия, Франция (по 6) и Россия (3). 12 стран имеют по 2, 13 - по одной крупнейшей полости своего континента.

В таблице 4 приведены данные о 5 крупнейших полостях мира. Все они (кроме Оптимистической) заложены в известняках. По протяженности 3 из них находятся в Северной Америке (США), 2 - в Европе (Украина и Швейцария), а по глубине 3 - в Европе (Австрия, Франция), 1 - в Азии (Грузия), 1 - в Северной Америке (Мексика).

 

Таблица 3 Самые крупные полости разных континентов и мира (по протяженности, км. и глубине, м.)

Горные породы Европа Азия Африка Австралия и Океания Северная Америка Южная Америка
Известняк 165,5 Хельлох, Шв.2 1634 Лампрехтсофен, Австр. 109,0 Гуа-Ер-Джермин, Мал. 1508 Пантюхина, Гру. 18,4 Рхар-Бумаза, Алж. 1170 Ану Иффлис, Алж. 54,8 Мамо Кананда, Пап. 1141 Мурук, Пап. 563,5 Мамонтова, США 1475 Хайютла, Мек. 64,00 Тока да Боа Виста, Бра. 407 Мильпо де Каукиран, Пер.
Мел 7,0 Руффиньяк Фр. 35 Гюи-Денизо, Фр. ? ? 10,8 Мулламглланнг Ав. 134 Вибубби, Ав. ? ?
Гипс и ангидрит 207,0 Оптимистическая, Укр. 205 Сумидор, Исп. 1,48 Баскунчакская, Рос. 126 1000-летия Киева, Тадж. 3,59 Умм эль Масаби, Лив. 212 Дахредж, Алж. ? 9,67 Джестер, США 110 Милл Рейс, США 0,89 Куэва дель Иезо, Кол.?
Каменная соль 3,20 Минжелешти, Рум. 42 Минжелешти, Рум. 5,45 Малхам, Изр. 135 Малхам, Изр. 1,03 Джельфа, Алж.? ? ? ?
Конгломерат 6,0 Кастель Сотерра, Ит. 198 Торремас, Исп. 47,5 Б. Орешная, Рос. 195 Б. Орешная, Рос. 5,26 Кенгоу, ЮАР? ? ? ?
Песчаники и кварциты 5,85 Пезенас, Фр. 215 Серрат де Вен, Исп. ? 2,4 Магнет-Кейв, ЮАР 105 Гхар Абден, Map. 0,24 Фансей-Вет, Ав. 113 Биг-Холе, Ав. 0,33 Клер-Спрингс, США 165 Паютч, США 1,5 Планальпина, Бра. 362 Сима Аонда, Вен.
Сланцы 0,52 Дель Церво, Ит. 148 Пель Церво, Ит. ? ? ? 0,18 Клей, США? 1,38 Экос, Бра.?
Граниты и гнейсы 2,61 Бодагротторна, Швец. 140 Воитасгалло, Швец. 0,23 Матангапарватам, Инд. 76 Катар Кува, Инд. ? 0,26 Галия, Ав. 120 Галия, Ав. 3,98 ТСОД, США 152 Грин-Хорн, США 0,3 Хачина, Бра.?
Базальтовая лава 3,0 Калмансхеллир, Исл. 218 Принукагигур, Исл. 13,27 Манжун-Гул, Кор. 181 Намгадук-Гул, Кор. 12,40 Левиафан, Кен. 515 Куэва-дель-Виенто, Исп. 60,0 Казумура, США 352 Аинахоу, США 5,66 Лабиринтовая, США 200 Юж. грот, США 2,33 Галлардо, Экв. 57 Буканеро, Экв.
Глетчерный лед 2,85 Кверкфьолл, Исл. 525 Кверкфьолл, Исл. 1,39 Октябрьская, Каз. 118 Октябрьская, Каз. ? ? 6,0 Парадайз США 3? ?

Примечания к таблице 3:

Крупнейшие полости мира подчеркнуты

Местоположение Ав. - Австралия, Австр. - Австрия, Алж. - Алжир, Бра. - Бразилия, Вен. - Венесуэла, Гав.о-ва. - Гавайские о-ва, Гру. - Грузия, Изр. - Израиль, Инд. - Индия, Исл. - Исландия, Исп. - Испания, Ит. - Италия, Каз. - Казахстан, Кан.о-ва. - Канарские о-ва, Кен. - Кения, Кол. - Колумбия, Кор. - Корея, Лив. - Ливия, Мал. - Малайзия, Map. - Марокко, Мек. - Мексика, Нов.Зел. - Новая Зеландия, Пап. - Папуа-Новая Гвинея, Пер. - Перу, Рос. - Россия, Рум. - Румыния, США - Соединенные Штаты Америки, Тадж. - Таджикистан, Укр. - Украина, Фр. - Франция, Шв. - Швейцария, Швец. - Швеция, Экв. - Эквадор, ЮАР -Южно-Африканская Республика

Вследствие таяния ледника длина пещеры за 25 лет уменьшилась с 24 до 6 км.


Таблица 4 Пять самых крупных карстовых полостей мира

Название Страна Протяженность, км Название Страна Глубина, м
Мамонтова США   Жан-Бернар Франция  
Оптимистическая Украина   Лампрехтсофен Австрия  
Джевел США   Мирольда Франция  
Хельлох Швейцария   Пантюхина Грузия  
Лечугия США   Хайютла Мексика  

 

В 1988 г. венгерские географы "ранжировали" страны мира не по одной, а по пяти крупнейшим пещерам (табл. 5). По состоянию на 1998 г., на первом месте по протяженности пещер с большим отрывом (2,5 раза) находятся США, затем следуют страны Европы (Украина, Швейцария, Франция). По глубине 3 первых места занимают страны Европы (Франция, Испания, Австрия), затем следуют Северная Америка (Мексика) и Азия (Грузия).

 

Таблица 5 Страны, в которых расположены 5 самых крупных полостей мира (все, кроме Оптимистической,- в известняках)

№№ Страна Суммарная протяженность, км №№ Страна Суммарная глубина, м
  США     Франция 6,9
  Украина     Испания 6,6
  Швейцария     Австрия 6,4
  Франция     Мексика 6,3
  Испания     Грузия 6,2

 

Приведенные данные свидетельствуют о "спелеологической активности" бывшего СССР (крупнейшие полости имеются в Грузии, Казахстане, России, Таджикистане, Украине), стран Центральной Америки (Мексика) и Океании (Папуа). Страны "традиционной" спелеологии лишь меняются в этих списках местами, отражая многолетнее соперничество их спортивных школ.

Кроме протяженности и глубины крупнейших полостей, МСС ведет учет ряда других параметров карстовых и некарстовых полостей мира.

Самые северные по расположению - пещеры в глетчерном льду (Шпицберген, 79° с.ш.) и гидратационная пещера в гипсах (Новая Земля, 71° с.ш.).

Самые южные по расположению - эксплозионно-фумарольная пещера-онкос на склоне вулкана Эребус (Антарктида, 77° ю. ш.) и карстовые пещеры Новой Зеландии (45° ю. ш.).

Самая высоко расположенная карстовая полость - пещера Ракиот (+6645 м, мраморы массива Нанга Парбат, Индия); из крупных полостей: в Евразии - гидротермокарстовая Сыйкырдуу (+4600 м, 2050/-268, Памир), в Южной Америке - речная система Мальпо де Каукиран (+3992 м, 2141/-407, Анды).

Самая низко расположенная карстовая полость - пещера Колонель (-372 м, каменная соль массива Седом, берег Мертвого моря, Израиль). Самые низко расположенные затопленные морем пещеры (-200 м) обнаружены в известняках, слагающих континентальный склон Средиземного моря.

Крупнейшие сплошные отвесы пройдены в пещерах Вртиглавица (643 м, Словения), Холленхелле (450 м, Австрия), Минье (417 м, Папуа-Нов. Гвинея), Абац (410 м, Грузия).

Крупнейшие залы:

по площади

Саравак (Малайзия, 167 тыс. м2,или 26 футбольных полей);

Торка дель Карлиста (Испания, 76,6 тыс. м2).

по объему

Саравак (Малайзия, 25 млн. м3,или 10 пирамид Хеопса),

Миао (Китай, 5 млн. м3),

Бенуа (Папуа-Нов.Гвинея, 5 млн. м3).

Длиннейший сифон: Ду де Коли, Франция, 4055 м.

Глубочайший сифон: Воклюз, Франция, -310 м.

Длиннейшая заполненная водой пещера: Леон Синкс, США, 16732 м.

Самый высокий подъем уровня воды в пещере: Луир, Франция, +450 м.

6.9. Подземные ландшафты

Выдающийся русский географ Н. А. Гвоздецкий в 60-е гг. XX в. обратил внимание исследователей на то, что карстовые явления - не редкость, каковой они считались в XIX и даже в начале XX в., при слабой географической и геологической изученности отдельных стран и поверхности земли в целом. Поэтому изучение карстовых процессов - отнюдь не частная проблема геолого-географических наук. В полной мере это относится и к подземным пространствам. Как следует из приведенного краткого обзора, карстовые и некарстовые полости очень широко развиты на всех континентах (рис. 48).

Интересно сопоставить распространение подземных полостей в пределах разных климатических зон. Изучение карста было начато в умеренном поясе, характеризующемся значительными различиями между летом и зимой, средним количеством атмосферных осадков (250-1000 мм), частым выпадением и стаиванием снега. В пределах этого пояса располагаются карстовые регионы Северо-Западной, Средней и Восточной Европы, части Северной, Центральной и Восточной Азии, Канады, юга Южной Америки и Новой Зеландии с большим количеством полостей.

Почти нет пещер в субарктическом и арктическом (антарктическом) поясах, для которых характерны большие колебания годовых температур, малое количество осадков (менее 250 мм), наличие многолетнемерзлых пород. Возможно, это объясняется их недостаточной изученностью.

Очень много полостей находится в субтропических поясах, для которых характерно большое количество годовых осадков (500-более 1000 мм) при их четком сезонном ходе. В этих поясах находятся карстовые районы Южной Европы, части Малой, Центральной и Восточной Азии, Соединенных Штатов Америки, Чили, Аргентины, Парагвая, Уругвая, юга Бразилии, Африки и Австралии, части Новой Зеландии.

Тропические пояса отличаются повышенной температурой воздуха (при ее слабых сезонных колебаниях), высоким (более 1000 мм) количеством осадков. К ним относятся регионы Западной и Южной Азии, Центральной и Южной Америки, Северной и Южной Африки, почти вся Австралия.

Субэкваториальные и экваториальный пояса отличаются малыми температурными колебаниями и четким сезонным ходом осадков (много более 1000 мм). В них входят карстовые районы части Южной Азии, Центральной Африки, Центральной и Южной Америки, где в последние годы открыто много очень крупных и своеобразных по морфологии полостей.

Такие существенные различия в климате, естественно, породили особое, климатическое, направление в изучении карста и наземных карстовых ландшафтов. Интерес к нему возрос после того, как в "классическом" карсте Словении, в настоящее время находящемся в условиях умеренного климата, были обнаружены формы, предположительно образованные в более холодных или значительно более теплых (даже жарких) условиях. Дальше все было, как в поэме А. К. Толстого "История государства Российского":

Не далее как к святкам
Я Вам порядок дам.
И тотчас за порядком
Уехал в Амстердам.

Только поехали карстологи и спелеологи отнюдь не в Амстердам, а в полярные страны (Ж. Корбель, М. Пулина и др.) и в тропики (М. Свитинг, Р. Вильяме и др.). Изучив особенности карста высоких и низких широт "в чистом виде", они вернулись в свои карстовые регионы. Углубленный палеогеографический анализ показал, что, действительно, в той же Словении в начале антропогена (примерно 1,5-2 млн. лет назад) карст развивался в условиях значительного похолодания, а в палеогене (65-25 млн. лет назад) - потепления...

Ну а как же подземные полости? В какой мере они реагируют на изменения ландшафтных условий поверхности? Еще в 1928 г. В. П. Семенов-Тяньшанский выдвинул идею о необходимости выделения пещерного ландшафта как самостоятельной ландшафтной категории. В 40-е гг. ее поддержали и развили Н. А. Гвоздецкий, а в 60-70-е - Б. А. Гергедава, Л. И. Маруашвили и А. Г. Чикишев. Наиболее полно эту проблему осветил В. Н. Андрейчук. Подземный ландшафт - природный комплекс с особой подземной топографией, климатом, гидрографической сетью, отложениями, растительностью, животным миром. Подземный ландшафт тесно связан с наземным. Лучше других изучены эти связи для карстовых ландшафтов, однако данные свидетельствуют о необходимости исследования и других типов ландшафтов.

Воздержимся даже от самого общего изложения современных представлений о составе, структуре, функционировании и динамике развития подземных ландшафтов. Это слишком специальный вопрос, рассмотрение которого увело бы нас далеко от темы. Понятие "подземный ландшафт" просто используется нами для "организации" материала. В отдельных главах будут рассмотрены некоторые направления изучения подземных пространств: в главе 7 - особенности их микроклимата; в 8 - их гидрология, в 9 - отложения, в 10-12 - живые и вымершие обитатели, в 13-15 - проблемы археологии. Остальные главы посвящены использованию подземных пространств и некоторым аспектам их охраны.

КЛИМАТ ПЕЩЕР

 

Вам случалось входить в подземелье
Прямо с пыльного, знойного дня,
Чтоб от сырости руки немели,
Чтобы слепли глаза без огня?

Л. Ошанин

7.1. Свет во тьме

Пещеры ассоциируются у человека с абсолютным мраком. Между тем известны шахты, в которые на большую глубину от поверхности проникают солнечные лучи.

В 1959 г. крымские спелеологи преодолели "ламповое стекло" Бездонного колодца на Чатырдаге, впервые в СССР спустившись на глубину 145 м (рис. 19). Их поразило, что здесь можно было свободно вести записи без фонаря: лучи солнца, многократно отраженные оглаженными водой розово-красными стенами, проникали в самые дальние уголки придонного зала. Над конусом снега поднимался сиреневый туман испарений... На еще большую глубину (417 м) проникают солнечные лучи в гигантский ствол пещеры Минье на острове Новая Гвинея, куда на добрые 200 м может опуститься вертолет (рис. 54).

Свет и тьма - пример самого яркого контраста в природе, который привел человека к познанию одного из основных законов диалектики. Еще в XI в. до н. э. древнекитайские мудрецы изображали единство противоположностей в виде черно-белой окружности Ян-Инь (рис. 55), где Ян - небо-Отец, а Инь - земля-Мать. Отождествление природы и человека привело к вере в возникновение всего сущего благодаря половому воспроизводству. Сексуальные отношения мужчины и женщины стали моделью, по аналогии с которой осознавались природные связи и конструировались диалектические противоречия - день и ночь, солнце и луна, восход и заход, лето и зима, тепло и холод, огонь и вода, сухое и мокрое, твердое и мягкое. На страницах дошедших до нас рукописей философы древности раскрывали тайны познания, связанные с возникновением абстрактных понятий, также объединяющих противоположности. Это бог и черт, добро и зло, белое и черное, правое и левое, четное и нечетное, материальное и духовное, количество и качество, активность и пассивность. "Тайна двойного" - в единстве, и владеть ею могут только посвященные, умные, высокоморальные люди. Познание этой великой тайны - спираль, по которой развертывалось формирование человека от гениальных догадок прошлого до системного анализа современности. Во все времена это был путь выявления связей в пространстве и во времени, способ охвата целого в единстве, умение увидеть за "деревьями - лес". Символу Ян-Инь посвящена обширная литература, из которой мы узнаем, что многие верования азиатских, европейских, африканских народов восходят к пещерам... Недаром трансформированный в объемную фигуру символ Ян-Инь был избран в качестве эмблемы VIII Международного конгресса спелеологов в 1981 г. в США (рис. 55).

Но вернемся из глубин философии к глубинам Земли. Еще в средние века люди иногда замечали на стенах пещер переливы золотисто-зеленых искорок. Легенды рассказывали, что это трудолюбивые гномы сложили здесь россыпи драгоценных камней. Но стоит взять их в пригоршню и вынести на свет, как они превращаются в сырые комочки земли. Пронизывающие их тонкие матово-зеленые нити - это ростки пещерного мха-шизостега. Свет, который излучает мох, не его собственный. Округлые клетки пещерного мха, как оптические линзы, собирают невидимые человеческому глазу кванты света, преломляют их в виде узкого луча и направляют на хлорофилловые зерна. А те создают из неорганических соединений питательные органические вещества. Частично отражающийся от зерен хлорофилла свет и создает таинственные огни в глубине пещер.

В тропиках обитают светляки, снискавшие всемирную славу пещере Уайтомо (Новая Зеландия). Тихо скользит лодка по течению подземной реки. Не горят электрические фонарики, но в пещере светло. Со стен и сводов льется зеленовато-синий свет. Мириады светящихся точек созвездиями покрывают потолок, с него свисают фестоны и занавеси, состоящие из отдельных нитей, унизанных светящимися каплями. Стукнет весло о камень - сияние гаснет. Все умолкает - разгорается так, что можно читать...

В пещере Уайтомо обитают личинки грибного комарика Arachnokampna Luminosa. Жизнь его начинается с того, что самка откладывает на стенах пещеры крохотные (доли миллиметра) круглые яйца. Дней через двадцать из тесной оболочки появляется червячок-личинка. Она сразу вспыхивает ярким светом и начинает плести себе домик-трубочку. Закончив работу, личинка выпускает изо рта тонкую "леску" с 60-70 капельками липкой слизи. Привлеченный светом комар подлетает к нити и прилипает к ней. Личинка "сворачивает" свое удилище и проглатывает его вместе с жертвой. Через 8-9 месяцев личинка убирает ловчие сети, окукливается и повисает на тонкой шелковинке. Куколки тоже светятся, то вспыхивая, то погасая. Затем из них выводится комарик, вылетает из пещеры, встречает самку, и жизненный цикл повторяется. Свечение пещеры Уайтомо - сложный процесс, при котором 99% биохимической энергии высвобождается в виде "холодного" света, который светлячок может по своему желанию "включать" или "выключать".

В середине XX в. была раскрыта еще одна тайна пещер. Если на долю секунды включить электрический фонарь или облучить стены пещеры, покрытые натеками, лампой-вспышкой, возникает призрачное свечение, вызванное флюоресценцией. Так что тьма пещер не абсолютна. И, безусловно, правы спелеологи, избравшие своим девизом латинскую пословицу post tenebras spera lucem - " после мрака надеюсь на свет ". Часто эти надежды реализует воображение человека. А. Е. Ферсман в одной из своих геохимических работ писал: "Вообразить - открывать - это значит вносить частицу собственного света во тьму пещер, где обитают разнообразные возможности, формы и величины..."

Иногда познание таинственного мира пещер принимает удивительные формы. В 1966 г. вышла из печати книга "Моя двойная ночь". Ее автор, Колет Ришар, женщина нелегкой судьбы. Родилась она в 1935 г. в Версале и через два года полностью ослепла. В 10 лет Колет получила в награду за отличную учебу небольшую книгу Н. Кастере о пещерах, набранную шрифтом Брайля. Так перед ней открылся мир подземных дворцов. Но прежде чем попасть в них, Ришар с помощью известных французских альпинистов М. Эрцога, Л. Тере, Г. Ребюффа овладела основами скальной и ледовой техники, совершила восхождения на альпийские вершины. Еще через 5 лет осуществилась ее мечта: Колет познакомилась с Норбером Кастере и стала первой в мире слепой пещерницей... На ее счету десятки пройденных пещер, в том числе - спуск на глубину 720 м в знаменитую Пьер Сен-Мартен. Единственная ее "слабость" как спелеолога - любовь к одиночеству. Безмолвие пещер, их "двойная темнота" не страшат Колет. Легкий свист ее "зрячего друга", карбидной лампы, придает особую поэтичность подземному миру...

7.2. Владения Эола

Согласно греческой мифологии Эол - повелитель ветров, правитель острова Эолия, где нашел приют Одиссей во время своих странствий. В гомеровских и более поздних сказаниях Эол уже поэтический образ владыки ветров; он восседает со скипетром на вершине горы, над пещерой, в которой заключены ветры. Приходится только поражаться образности и точности представлений древних греков: в пещерах и шахтах почти всегда ощущается движение воздуха. Иногда это теплое дуновение, напоминающее нежный западный ветер Зефир; иногда - холодные порывы, сродни северному Борею...

 


Рис. 56. Схема движения воздуха под землей.

А - динамические пещеры, Б - статические пещеры. Направления движения воздуха: а - холодного (зима, ночь), б - теплого (лето, день), в - сифоны. Зоны: г - с замедленным движением воздуха, д - с воздухом пониженной температуры, е - с воздухом повышенной температуры

 

Что же приводит в движение воздух под землей? Основных причин две: нарушение равновесия между внешним и внутренним столбами воздуха и перепад атмосферного давления. Их описывают две модели - динамическая и статическая.

К динамическому типу относятся полости, имеющие два входа, расположенные на склонах или на склоне и плато, либо состоящие из галереи, соединенной с поверхностью узкими трещинами (рис. 56). Воздух в пещере обычно более влажен, чем поверхностный. Поэтому равновесие между их столбами нарушается и возникает сезонная тяга (наподобие тяги в печке): зимняя восходящая и летняя нисходящая. Это приводит к значительному охлаждению нижней и прогреву верхней части пещеры. Например, в Красной пещере в Крыму средняя годовая температура воздуха нижних этажей +8 °С, а верхних - +11. Скорость движения воздуха в таких пещерах весьма значительна: обычно она составляет 0,3-2,0 м/с, увеличиваясь в сужениях до 5-10 м/с.

Коэффициент воздухообмена (отношение объема воздуха, проходящего через пещеру за сутки, к объему полости) в динамических пещерах достигает 15-25 раз в сутки, а в узких коррозионно-гравитационных шахтах даже 75-120 раз в сутки. Поэтому в главных, хорошо проветриваемых ходах таких пещер воздух всегда более свежий, чем в тупиковых. С этим, однако, связана одна из специфических опасностей пещер, дым от факелов или от костра, неосторожно разведенного у входа, может доставить много неприятностей людям, находящимся в глубине пещеры.

В двух- или многовходовых пещерах часто проявляются различные второстепенные причины возникновения движения воздуха: колебания атмосферного давления, эффект разрежения, связанный с водными потоками, порывы ветра на поверхности. В постоянно обводненных пещерах большое влияние на направление и интенсивность воздушной циркуляции оказывают сифоны (рис. 56). Когда они закрыты, дальняя часть пещеры "отключается" от ближней. Летом сифоны открываются и возникает очень сильная воздушная тяга, иногда меняющая сезонное направление движения в ближней части пещеры на обратное.

Очень активно движение воздуха у подземных водопадов. Движущаяся масса воды увлекает за собой воздух, как насосом, загоняя его в самые дальние уголки пещеры. Здесь наблюдается еще одно интересное явление: баллоэлектрическии эффект. Вода, падающая с большой высоты, разбрызгивается на мелкие (менее 1 мм в диаметре) капли, которые приобретают значительный заряд (0,7-1,0x10-12 кулон/см3). Поэтому у подземных водопадов особенно легко дышится.

С высокой электризацией воздуха пещер связано и то, что входы в них "притягивают" молнии... Специальные наблюдения, выполненные в Пиренеях, показали, что процент поражения молниями в привходовых частях пещер статистически выше, чем при укрытии от грозы просто под скалами...

Еще одно интересное явление - "пещерное дыхание". Оно наблюдается в плоских или объемных лабиринтах (Оптимистическая и Кристальная - в Подолии, Красная и Эмине-Баир Хосар - в Крыму, Винд - в США и пр.). Суть его в том, что на входах в пещеры или в сужениях, разделяющих их отдельные части, отмечается пульсация воздуха по скорости (0-5 м/с) и по направлению (зимняя тяга сменяет летнюю). Периодичность "дыхания" может колебаться от nx101 мин. до nx100 с. Имеется несколько гипотез, объясняющих механизм этого природного феномена. Р. Заар предложил модель, связывающую "пещерное дыхание" с атмосферным давлением на поверхности. Но их изменения на протяжении суток, как правило, не совпадают. Р. Подзимек считает, что пещера "дышит" при накоплении в воронкообразном входе более холодного воздуха, который затем прорывается через столб теплого воздуха, поднимающегося из пещеры. Такой механизм действительно описан на входе в лабиринт Озерной пещеры (Подолия). Но он объясняет только длиннопериодические (десятки минут - часы) изменения тяги, так как для накопления холодного воздуха во входной воронке нужно время.

Как часто бывает в науке, ответ пришел с совершенно неожиданной стороны. В 30-е годы в Америке, а затем и во всем мире, появилась забавная игрушка. Это небольшая (10 см длиной) металлическая лодочка, в которой установлен миниатюрный паровой котел - два спаянных очень тонких листика жести площадью 1 см2 со входной (питающей) и выходной (выдающей) трубочками, выведенными в корму. Котел заполняется пипеткой, вода доводится до кипения при помощи небольшой плошки с парафином и фитилька, и... лодочка начинает довольно быстро двигаться по воде, издавая звук: "пат-пат-пат". Эффект "пат-пат" - ритмичного сжатия и расширения металлической гофрированной емкости-сильфона - оказался очень важным для обеспечения работы космических двигателей. Он описывается сложными уравнениями 5-7 степеней. С докладом на эту тему в 1963 г. в Москве выступили американские математики Дж. Финн и Р. Керл. Но Керл увлекался спелеологией. И он доказал, что "пещерное дыхание" имеет такую же природу. Только движителем для него служит не свечка, а процесс конденсации, приводящий к нелинейному выделению некоторых количеств тепла. Воздух в пещере то сжимается, то расширяется - пещера "дышит".

Почти одновременно к такому же выводу на большом фактическом материале по пещерам Крыма пришел и автор: на лентах термографов и гигрографов зафиксированы мелкие пульсации температуры и влажности, хорошо коррелирующиеся с "дыханием" пещер.

Направления движения воздуха в пещерах являются хорошим поисковым признаком. Сотни крупных полостей были открыты зимой, по проталинам в снегу, которые возникают на выходе теплого пещерного воздуха, или напротив,- по струе холодного воздуха, вырывающейся из незаметной щели в борту воронки. Иногда возникали и более сложные ситуации. В 50-60 гг. близ г. Сочи было описано несколько довольно крупных пещер: Воронцовская, Лабиринтовая, Кабаний провал, Долгая, расположенные на разных отметках (перепад до 50 м). Воронцовскую и Лабиринтовую пещеры удалось соединить довольно быстро, пройдя небольшой сифон. Поиск здесь проводился круглый год, поэтому спелеологи скоро заметили удивительную особенность Лабиринтовой пещеры: поток воздуха всегда только выходил из нее... В 1979 г. мы обсудили этот феномен на семинаре старших инструкторов и пришли к выводу, что необходимо искать связь Лабиринтовой с более высоко расположенным Кабаньим провалом. После разборки глыбового навала у входа и преодоления нескольких полусифонов она была действительно установлена. Возникла Воронцовская система протяженностью 10,6 км. Ее связь с Долгой пещерой сомнений не вызывает, но "просочиться" через узкие щели спелеологам пока не удалось.

Движение воздуха под землей, к ужасу метеорологов-классиков, иногда подчиняется законам гидравлики. Здесь "работают" уравнение неразрывности потока (в расширениях скорость движения меньше, в сужениях - больше) и закон Бернулли, учитывающий давление воздуха, скорость его движения, высотное положение разных частей изогнутого канала и наличие местных сопротивлений (поворотов, расширений и пр.). Хорошие расчетные зависимости для определения теплового режима и степени проветриваемости рудников разработаны в горном деле. Применив их к спелеологии, мы поняли многие, ранее считавшиеся загадочными, явления. Например, во всех 150 карстовых полостях нижнего плато Чатырдаг (Крым) тяга "опрокинута", то есть летом наблюдается "зимнее", а зимой - "летнее" движение воздуха. Объясняется это явление тем, что пещеры нижнего плато, находящиеся на высоте 700-900 м над уровнем моря, связаны непроходимыми для человека трещинами с колодцами и шахтами верхнего плато (1100-1500 м). Вскоре этот вывод был подтвержден инструментально: на склоне Чатырдага, на высоте около 300 м, в разгар лета был обнаружен выход холодного воздуха с температурой +5 °С, хотя в пещерах нижнего плато она даже зимой много выше (8,5-9,5°С).

К статическому типу относятся так называемые "холодные и теплые мешки" (рис. 56). Это одновходовые полости, слабо связанные трещинными системами с поверхностью. К "холодным мешкам" относятся нивально-коррозионные колодцы и шахты, а также пещеры-поноры. Зимой всегда (а летом - ночью) охлажденный, более плотный наружный воздух заполняет их до уровня входа. Летом теплый воздух может прогреть только верхнюю часть полости. Нижняя ее часть прогревается очень медленно - за счет теплопередачи через стенки и постепенно возникающего местного конвективного теплообмена. Средняя годовая температура в таких полостях составляет -3 -6 °С. Поэтому в них часто возникают скопления снега и образуется пещерный лед.

К "теплым мешкам" относятся древние, ныне осушенные пещеры-источники. Заполняющий их теплый летний воздух зимой охлаждается только за счет теплопроводности стенок. Их средняя годовая температура составляет 8-10 °С, а температура теплого сезона - 14-16 °С. Главная причина возникновения движения воздуха в таких полостях - изменение атмосферного давления. При его увеличении возникает слабая тяга внутрь, уменьшении - наружу. Интенсивность тяги, естественно, невелика, а коэффициент воздухообмена обычно не превышает единицы. Ощутимый "барометрический ветер" возникает только в случае, если очень крупные статические полости-лабиринты соединяются с поверхностью узким каналом. В пещере Винд (США) скорость тяги в сужениях достигает 150 км в час (40 м/с).

7.3. Человек-термостат

В жару и в мороз температура тела здорового человека почти неизменна. Это определяется свойствами воды, из которой в основном состоит наш организм. Удельная теплоемкость воды (кал/г °С) зависит от температуры, имея минимум при 36-37 °С. Поддержание постоянных тепловых параметров - условие нормального протекания биологического процесса при любых внешних условиях. Однако если для химических реакций характерно повышение их скорости с ростом температуры, то для биологических процессов существует оптимальный минимум теплозатрат. Кровь и лимфа, циркулирующие по телу,- прекрасные теплоносители, они способствуют превращению организма человека в подвижный физиологический термостат с саморегулированием.

Но человек все время перемещается, попадая в разные внешние условия. Мы уже видели, что спелеологические объекты располагаются во всех климатических поясах от экваториального до арктического и антарктического (рис. 48) и на разных высотах (от +6 +1 км, пещера Ракиот в Гималаях, до -3 -4 км, золото- и уранодобывающая шахта Витватерсранд в Южной Африке). Они контактируют с двумя зонами атмосферы тропосферой (0:+7 км) и подземной тропосферой (0:4 км), особенности которых изучают науки географического цикла. В пределах этих зон все метеорологические параметры испытывают сильные колебания.

Атмосферное давление меняется от 300 (на высоте 7 км) до 350 (на уровне моря) и даже 1125 мм рт. ст. (на глубине 4 км) Работая в зоне индифферентности (0 +2000 м), спелеологи не замечают особых изменении в своем организме, в зоне полной компенсации (+2000 +4000 м) организм начинает работать нормально только после нескольких дней акклиматизации, в зоне неполной компенсации (выше 4000 м) у многих могут наблюдаться признаки горной болезни - гипоксии. С ее проявлениями можно столкнуться при изучении карстовых (Сыйкырдуу, +4600 м) и ледниковых (Памир, 5900...6100 м) пещер Таджикистана. Проявления горной болезни индивидуальны (встречаются не у всех членов группы или в разное время), а границы - возрастают с увеличением континентальности климата (Альпы - +2800, Кавказ - +3400, Тянь-Шань - +4100, Тибет и Гималаи - +5500 м).

Температура воздуха на поверхности моря в разных климатических поясах колеблется от -65 до +34 °С. А к верхней границе тропосферы убывает (средний градиент 0,5 °/100 м). В подземной тропосфере, начиная с некоторой глубины (10-25 м), она нарастает от среднегодовой температуры местности (геотермический градиент +3°С/100 м). Таким образом, при отсутствии искусственной вентиляции температура в шахтах на глубине более 1 км должна превышать 30 °С.

Абсолютная влажность воздуха уменьшается с высотой от 20-30 мм рт. ст. на уровне моря до 0,3-0,5 мм рт. ст. на высоте 5-7 км.

Газовый состав воздуха. У земной поверхности сухой воздух содержит 78,08 объемных % азота, 20,95% - кислорода, 0,93% - аргона, 0,03% - углекислого газа, 0,015% - иных газов (криптон, ксенон, гелий, водород, радон, метан и пр.). Местами воздух обогащается другими газами и соединениями, которые образуются при сгорании топлива. Соотношение основных компонентов воздуха с высотой не меняется.

В состав атмосферного воздуха входят также аэрозоли - твердые и жидкие частицы разного происхождения, имеющие диаметр 0,001-5 мкм, различные бактерии и пр. Их количество максимально в приземном слое и уменьшается с высотой. Так, например, в 1 м3 солдатской казармы содержится 220 000 микроорганизмов-сапрофитов, в больничной палате - 40000, а на высоте 4 км - всего 330. Часть молекул атмосферных газов и аэрозолей несет электрический заряд. С высотой содержание ионов в воздухе возрастает.

Атмосферный воздух находится в непрерывном движении. Его активное перемешивание обеспечивают ветры. До высоты 1000 м за счет трения сила ветра испытывает сильные колебания (0-30 м/с), а с высотой возрастает, достигая ураганной силы (свыше 30 м/с).

Человек на открытом воздухе подвергается воздействию не средних состояний всех метеоэлементов, а их реальному сочетанию, то есть влиянию погоды. В любой точке земли погода определяет состояние человека, которое врачи оценивают по 7-балльной шкале: очень холодно, холодно, прохладно, комфортно, тепло, жарко, очень жарко. "Термостат" человека реагирует на его ощущения специфическими терморегуляторными реакциями: потоотделением или дрожью, изменениями пульса и дыхания; а сам человек - действиями: изменением позы, снятием теплой одежды и пр. Но как поведет себя организм человека в чуждой ему среде карстовых полостей? Чтобы ответить на этот вопрос, необходимо изучить особенности пещерной среды. Этим занимается специальная наука - спелеометеорология.

Известный французский спелеолог Ф. Тромб в 50-е гг. построил график, наглядно иллюстрирующий микроклиматические условия пещер через соотношение температуры, абсолютной и относительной влажности воздуха (рис. 57). В пределах каких полей чаще всего приходится работать под землей? Ответ на этот вопрос дают многочисленные наблюдения, выполненные в разных карстовых полостях мира.

Рис. 57. Наиболее вероятные микроклиматические условия проведения спелеологических исследований (по Ф. Тромбу, с дополнениями автора).Условия пребывания под землей: 1 - холодно, влажно; 2 - холодно, очень влажно; 3 - изнуряюще жарко; 4 - холодно; 5 - прохладно; 6 - нормально; 7 - жарко; 8 - возбуждающе; 9 - раздражающе жарко


Температура воздуха в пещерах колеблется в очень широких пределах: от отрицательных (-20...-40 °С) в ледниковых полостях полярных и горных стран до положительных (+25...+38 °С) в полостях тропиков и субтропиков, а также в глубоких искусственных выработках. Американские спелеологи Мур и Сюлливан предложили формулу, связывающую температуру в нейтральной части пещер (Т, °С) с широтой местности (L, °) и высотой над уровнем моря (Н, м):

T = 38 - 0,6L - 0,002H

Естественно, это средние цифры, зависящие от местных условий, геотермических особенностей региона, морфологии пещер, интенсивности их проветривания и пр.



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-09-06 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: