Вероятностные характеристики сигналов




Измерительные сигналы, являясь случайными сигналами, не могут быть описаны математической функцией времени с полной определенностью.

В соответствии с этим можно говорить лишь о вероятности появления в каждый данный момент того или иного значения сигнала.

При подобном подходе объектом изучения становятся не характеристики конкретного сигнала, а вероятностные статистические характеристики совокупности сигналов электросвязи того или иного вида связи.

К статистическим характеристикам случайного сигнала s (t) относятся:

среднее значение (постоянная составляющая)

где Т — время наблюдения случайного процесса;

мгновенная мощность случайного сигнала s (t)в момент t по определению равен

энергия случайного сигнала s (t)равна интегралу от мощности по всему интервалу времени существования или задания сигнала. В пределе:

средняя мощность случайного сигнала s (t) в интервале t 2 –t 1

Понятие средней мощности может быть распространено и на случай неограниченного интервала Т = t2 – t 1⟹∞. Строго корректное определение средней мощности сигнала должно производиться по формуле:

Квадратный корень из значения средней мощности характеризует действующее (среднеквадратическое) значение сигнала (220 В – действующее значение гармонического колебания с амплитудой 380 В).

Применительно к электрофизическим системам, данным понятиям мощности и энергии соответствуют вполне конкретные физические величины. Допустим, что функцией s(t) отображается электрическое напряжение на резисторе, сопротивление которого равно R Ом. Тогда рассеиваемая в резисторе мощность, как известно, равна (в вольт-амперах):

w(t) = |s(t)|2/R,

В теории сигналов в общем случае сигнальные функции s(t) не имеют физической размерности, и могут быть формализованным отображением любого процесса или распределения какой-либо физической величины, при этом понятия энергии и мощности сигналовиспользуются в более широком смысле, чем в физике. Они представляют собой метрологические характеристики сигналов

Если в выражении для энергии

взять не квадрат модуля сигнала, а произведение сигнала и его же, но смещенного на время τ, то получится автокорреляционная функция

В случае периодических сигналов АКФ вычисляется по одному периоду Т, с усреднением скалярного произведения и его сдвинутой копии в пределах периода:

Энергетический спектр (спектральная плотность средней мощности)

Функция G (ω)представляет собой спектральную плотность средней мощности процесса, т. е. мощность, заключенную в бесконечно малой полосе частот.

Мощность, заключенную в конечной полосе частот между ω 1 и ω 2 определяют интегрированием функции G (ω) в соответствующих пределах:

3.3. Динамический диапазон и пик-фактор сигналов.

Мгновенная мощность сигналов связи может принимать различные значения в самых широких пределах. Чтобы охарактеризовать эти пределы вводят понятия динамического диапазона и пик-фактора сигнала.

Динамический диапазон сигнала дБ, определяется выражением

где Wтах и Wmin максимальное и минимальное значения мгновенной мощности.

Под Wтах обычно понимают значение мгновенной мощности сигнала, вероятность превышения которого достаточно мала (например, равна 0,01). О величине этой вероятности условливаются для каждого конкретного сигнала.

Пик-фактором сигнала называют отношение его максимальной мощности к средней. В логарифмических единицах

В некоторых случаях динамический диапазон и пик-фактор определяют не в логарифмических, а в абсолютных единицах (в «разах»).



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: